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PARAMETRIC INVESTIGATION OF FACTORS
INFLUENCING THE MECHANICAL BEHAVIOR

OF LARGE SPACE STRUCTURES
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INTRODUCTION

The problem of investigating extremely large deformations of very

flexible large space structures began to assume importance more than two

decades ago with launching of the ECHO I satellite into orbit. This system

was fabricated from 0.001 cm (0.0005 inch) thick Mylar coated with a vacuum

deposited molecular film of aluminum to provide reflectivity to radio fre-

quency transmissions. The final design of the vehicle indicated that its

rigidity was sufficient to retain its shape during earth orbit at 1600 km

(1000 miles) altitude, but that buckling might occur at somewhat lower

altitudes. In ECHO II a two-layer aluminum foil with an inner layer of

Mylar was utilized to overcome this buckling problem. During developmeht of

the ECHO vehicles, consideration was given to design of expandable struc-

tures for space application in the form of reflectors, solar collector,

solar sails, scientific equipment packages, and re-entry bodies. Factors

. '.i examined included design against the hazards of meteoroid particles, high

energy radiation, thermal effects, and other environmental factors.

* More recently, in 1981, serious attention has been given to development

of design criteria for a very large reflector antenna in orbit. One of the

more promising preliminary designs of this 800 meter (2600 feet) diameter

system involves a truss supporting a parabolic reflector with the outer edge

of the reflector being stiffened with a tension truss.

An extremely interesting conceptual design was that of SOLAR SAIL,

carried out at the Jet Propulsion Laboratory. This involved a vehicle in ]

the form of a square sail of area 64,000 m fabricated from very thin Mylar.

Solar radiation pressures were found to be of extreme importance in the ...............

projected flights of this system. , CoJes
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These investigations, together with others, have emphasized the need

for a better understanding of the relative importance of a number of en-

vironmental parameters involved in the design of any large space structure.

These parameters include (a) effect of thermal gradients on the structure --

such influences may cause thermal buckling, thermally induced vibrations,

thermal stresses, etc.; (b) differential gravitational forces acting between

remote points of a large space structure having a characteristic dimension

of several kilometers (one to two miles) in length; (c) pressure gradients

along the length of the structure; (d) solar radiation pressure effects; (e)

albedo effects; and others.

OBJECTIVES OF RESEARCH PROGRAM

The present research has two objectives:

(Task I) To investigate the relative importance of factors (a) through

(e) on design of large space structures operating over a range of altitudes

from 200 km (120 miles) to 32,000 km (20,000 miles) above the earth.

(Task II) To investigate structural behavior of an extremely

lightweight film-like structure stabilized by internal gas pressure. Such a

system could possibly be employed as an instrument carrier, or alternately

as an appendage to a somewhat more rigid large space structure, perhaps of a

truss-like configuration.

SUMMARY OF RESULTS

Task 1 U
For the range of altitudes of interest in this investigation and men-

"* tioned earlier, and for large space structures having a characteristic

i LI ,",".' " ,'"" '. "" " '.".",".. .". .-. '.". .".-."-..-.". .". .... . ..--..- - .. v-.- -...- -%*-.'- .-. ',. .-.- "



length of several kilometers (one to two miles) the following results were

found:

1. Differential gravitational forces do not have any significant

effect on the length or attitude of the structure. Nor can such forces

alter the orbit appreciably.

2. Radiation heating is very significant in causing structural defor-

mation and in producing libration in attitude motion. However, the effect

" :.~on orbital parameters due to radiation heating is negligible.

3. Radiation pressure has a negligible effect on changing the axial
dimensions of the structure but it can disturb the attitude and orbital

motion significantly. Of the three external disturbing sources, namely

differential gravitational forces, radiation heating, and radiation pres-

sure, the radiation pressure causes the largest perturbation in the orbital

parameters of the system.
' ].'"4. In low earth orbit, effects of the earth's albedo and its direct

radiation should be included in analysis and design. At high altitude

orbits, albedo and direct earth radiation effects may be neglected and only

. €direct solar radiation need be considered.

5. A change in differential value of the end masses in the case of a

V "very long dumbbell-like space structure causes a change in the differential

gravitational force, but the effects due to this on the space structure are

negligible.

6. A change in the length of a space structure does not produce any

appreciable change .n the effect of the differential gravitational force on

* the system. However, the dimensions of the large space structure are of

great importance in the radiation thermal and pressure effect analyses since

'A A
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increasing the characteristic length of the structure leads to an increase

in surface area exposed to radiation.

7. Increasing the value of the initial attitude angle causes an in-

crease in the libration of the large space structure about its center of

mass. An initially imposed attitude misalignment does not, however, produce

any noticeable change in length of the structure.

8. An initially induced axial deformation of a large space structure

has a significant effect in changing the length and attitude of the struc-

ture, but has a negligible effect on perturbing the orbit parameters.

9. Any increase in initial angular velocity of a large space structure

induces a greater eccentricity of the orbit and greatly disturbs the at-

titude motion. For highly eccentric orbits, the structure may tumble -4

continuously. The orbit eccentricity, however, has an insignificant effect

in producing structural deformations.

10. Differential gravitational effects vary only very slightly with

altitude of the large space structure above the earth. However, radiation

thermal and pressure effects vary with changes in lower altitudes. Both

terrestrial radiation and direct solar radiation should be considered in

design of structures to operate at lower altitudes of approximately 200 km

(120 miles).

11. For the range of altitudes considered, for a long space structure

in the form of a dumbbell, the attractive forces between the two end masses

are negligible.

12. Radiation thermal and pressure effects are greatly enhanced by an

increased area-to-mass ratio of the structure. This ratio is one of the

most important parameters leading to an increase in thermal and radiation

pressure effects on a large space structure.

J.'
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13. A change of total mass of the large space structure produces only

a very minor change in differential gravitational effects. However, the

change of mass does produce a significant change in thermal and radiation

pressure effects because such a change is often accompanied by an increase

in the area-to-mass ratio of the system.

The entire analysis as well as detailed numerical results leading to

i .%" these conclusions are presented in Appendix A of this report.

Task II

The mechanical behavior of an extremely thin, internally pressurized

film-like membrane subject to combined mechanical and thermal loadings was

investigated. The material was assumed to be of a Mooney-type and governing

*, equations were derived using the constitutive relations of this material

together with thermodynamic relations. The dependence of deformations and

- thermal stress resultants on internal pressure, axial force, and materials

parameters has been determined and presented in parametric form. Regions of

stable equilibrium as well as of wrinkling in the vicinity of constraining

reinforcements have been determined. Some unexpected phenomena were dis-

covered, such as development of a barrel-shaped contour of an originally

cylindrical membrane due to loading with nearly constant axial forces.

, The entire analysis as well as detailed results leading to these con-

clusions are presented in Appendix B of this report.

PUBLICATIONS

" 4 ,Two research papers have been prepared thus far, with several more to

follow. The first two are:

V. ,..
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CHAPTER I

INTRODUCTION

Introduction and Scope of the Problem

... To Survive on Earth We Must Expand into Space,"

writes Ben Bova, editor of Omni magazine in his bock. The

HighRoad El. At the present time when the world is

suffering from overwhelming population growth. drast.c

decrease in natural resources, and pitiful environmental

Nconditions, the statement of Ben Bova seems to indicate the

ne:t resort for solving this global problem. In vi.ew at

tremendous modern scientific achievements, the possibil~t.v

of exploring the moon, nearby planets, and asteroids 4or

minerals and other natural resources and transporting them.

.. after processing in space, to the planet earth has become

vsry near to reality. Since 1981. the success of space

4. shuttle aircraft traveling back and forth between the eart ,

and space may have solved the problem of transportation. The.

successful operation of the Manned Maneuvering Unit 'MW

" during various missions of the space shuttle beginnino i

5 ebruary 198"3 has shown the world that the deployment.

:kssembl,/. and repair of a structure in space is not an

impossible job. Many advantages in both the civili .n 1d

.
p -
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defense fields created by erecting a large orbiting

structure in space have been recognized for almost two

decades. The number of advantages from the deployment of a

large space structure is constantly growing with new

developments in space technology. Listed below are a few

of them: :am

1. A large space structure can be used for solar power

stations, large space mirrors. large antennas,

space-based radar, and multipurpose large space

platforms.

Deploying a permanent large station in low earth orbit

(LEO) may facilitate industrial experiments in

material processing, a research laboratory, a staging

base for spacecraft refueling and maintenance, a

medical laboratory, a dormitory for wor crews. and a

center for large-scale construction projects.

.. A large space structure can act as a towing vehicle

which can carry pay loads from the low orbits

attainable by the space shuttle aircraft to higher.

more useful orbits.

4. One large manned space station built in geosvnchronous ""

earth orbit (GEO.,the 24-hour "Clarke Orbit"' could

consolidate many smaller satellites and allow

continuous maintenance of the sensors. Hence. it will

be able to decrease the congestion -:reated by placi.;

m=n-, zmaller satellites in space. The GEO is ,zurrent!

S%%



- W. .; 7 a -_- -4L ---. 1. --6- -4 - ' ff-

1-3

the most preferred site for communication, navigztion.

and meteorological satellites.

5. Finally, the technology developed for the large space

structures may gradually evolve and expand for ''=e

for the establishment of a space colony.

It is clear that there are many benefits that man!ind

can enjoy from the deployment of a very large structure in

space. Although there has been a great deal of development

in design and deployment concepts and technology needed for

Lthis regard, unfortunately, the core of the subject h'.s

still not been fully explored. The deployment of very large

structures in space which have characteristic dimensions of

S several kilometers operating at altitudes ranging from 200

to 75900 km above the earth's surface gives rise to a number

c-f new and significant problem areas that may not have been

passociated with smaller systems.

The objective of the present research is to investigate

these probable problem areas for very large light weight "

orbiting systems. It is believed that these problems rot

only need to be thoroughly understood for the formulation of

good design criteria for the successful and efficient

functioning of the large orbiting systems, but that these

problem areas may suggest additional uses for very large

structures in space. The effects on very large spgke e.

structures which are being investigated in this research

include the following more significant areas:

4%

°-m



1-4

(1) Differential gravitAtional force effects,

(21 Thermal effects, and

(_1 REdiation pressure effects.

Both the radiation thermal and pressure effects

include direct solar, direct earth, and earth's albedo

* radiation.

Since earlier investigations deal with relatively small

size structures orbiting in space, almost all of them treat

the orbital motion of the space structure unafffected by the

attitude motion E10. 783. However, this may not be true in

the case of a very large space structure. in addition to

taking this matter into consideration, the present work does

not put any restriction on the shape of the orbit in which a

space structure moves. Further, the structural behavior -

(deformation), at least in the longitudinal direction, of a

space structure is investigated here..5'

The section below gives a brief historical review

pertaining to the developement, design and deployment of

space structures in general. In the chapters following this.

the effects of the external disturbances are steadied on sn

a :ially flexible dumbbell-shaped space structure in a

general orbit. Chapter II presents the theoretical

developments. In Chapter IIT the numerical method for

solution of the equations of motion is discussed. In Chapter

IV the results and discussion of the results from the

n. er cAl analysis are presented. Finall', in Ch-te- ,

%-
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conclusions from the present S tudy are drawn. ar, d some

recommendations for further work in related .reas are

presented.

Historical Review

The successful launch and deployment of the Echo I

communication satellite on August 12, 196- [23 represented

the first introduction of a medium size, inflatable

thin-walled structure into orbit. The satellite was placed

near the I668-kilometer circular orbit. It was a

balloon-shaped satellite with a diameter 70.48 meters (100

feet) and was constructed from a 0.00127 cm '0. CCr5 irch) 

" thick PolyEthylene Terephthalate (PET) plastic film with

aluminum vapor deposited on the outside surface in order to

provide reflectancy to radio frequency transmission and to

protect the film from damaging ultraviolet radiation. Ins.de

the balloon, sublimating powders were added so as to develop

sufficient vapor pressure for inflation in the vacuum of

space. The magnitude of equilibrium pressure deve!cped

inside the satellite was dependent on the magnitude of the

membrane skin temperature. The variation of temperature

around the orbit was from 172 OC to -107 0C or a change of

2:9 0C. The final design of Echo I indicated that its

rigidity was sufficient tc retain its shape in the orbit of

R 1: 69 kilometer altitLude. bL, t it would requir - Ali h1 "h
' . i
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increase in rigidity to prevent buckling at lower orbit

altitude. In Echo II. this rigidity was provided bv two

layers of very thin aluminum foil with an inner layer of

Mylar. The Echo II vehicle was 41 meters in diameter.

The Echo missions were followed by the PAGEOS (Passive

Geodetic Earth Orbiting Satellite) missions. PAGEOS I was

identical to Echo I in shape, size, and basic principles of

its function. It was also fabricated of 1.27X10 - mm PET -S

film coated on the outside surface with vapor deposited

aluminum to make it highly reflective of sunlight. It was

placed in a near polar and circular orbit of 4237 l:ilometers

al ti tude on June 24, 1966 3.3. PAGEOS I was a

technologically advanced version of Echo I. The objective of

this mission was to provide a luminous target in near

earth-space that fulfills the requirement for worldwide

satellite triangulation. The temperature variation in this

orbit was predicted to be from 119 OC to -1710 0C. The

predicted life of PAGEOS I was about 5 years while that of

Echo I was considerably less. Another difference in Echo I

and PAGEOS I was that PAGEOS I spent a large percentage cf

its orbital lifetime in the inner Van Allen belt - a region

of high intensity, magnetically trapped, particul ate

radiation which extends from 2000 to 4800 km above the .

earth.

At about the time of development of the Echo and the

PAGEOS vehicles, consideration was given to design of ot'er

% z.
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P space structures for application in the form of reflectors,

solar collectors, scientific equipment packages, and an

orbiting astronomical observatory. These systems were of

relatively smaller sizes orbiting in the range ox altitde==

500) to 800 km. For this range of dimensions and altitudes, a

number of investigations were carried out pertinent to

design against the hazards of meteroid particles, high

energy radiation, thermal effects, and environmental

factors. Mention should be made of the Radio Astronomy

Explorer (RAE) satellite which was launched by NASA at about

- this time (July 1968). but it was of relatively larger size.

The main purpose of this satellite was to carry out some

measurements in longwave radio signals from outer snace

160]. The satellite had four. 750 feet STEM (Storable

Tubular Extendible Member) type, Be-Cu antennas in the

~*orbital plane.
.

During the last decade or so, there have been numerous

studies involving large space structures. Various missions

which require large lightweight structures, the major design

requirement of such structures, and the prediction of their

future have been summerized by Hedgepeth and Brodsky []4 and

E53. Although prioritized specific missions are not jet

defined, several novel and innovative design concepts have

been suggested for future applications [6-16]. Here.

I specific mention should be made of the Solar Sail concept.

t~he de. :-c which w:s envisioned more than two dec des ago

2V,
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17., 18 and was studied in detail and designed recently as

a square kite-like spacecraft for practical use by the Jet

Propulsion Laboratory 119, 20). Each side of the Square sail

was 850 meters. and a rendezvouz with Halley's comet was

considered as a first mission application. Unfortunatel/.

this project remained incomplete due to monetary reasons. "

Heliogyro is another proposed solar space vehicle £60). It

consists of twelve 6 km twisted blades which rotate in a

solar radiation field generating the required propulsive
U

forces.The Tethered Orbiting Interferometer (TOI) i5 yet

another proposed RAE satellite consisting of two end bodies

joined by a fle!.'ible lightweight cable several kilometers

(5 km) long C60). The entire structure is gravity gradient

stabilized with its long axis pointed towards the earth.

These conceptual ideas have provided valuable

information regarding the future technology needed 'or

developing and deploying structurally efficient, reliable.

and relatively low-cost systems in space.

- .i



ORC H A P T E R II

THEORETICAL DEVELOPMENT

Formulation of Problem

B ac I qround

LJ

The very large space structure upon which the effects

of a differential gravitational force, radiation thermal and

radiation pressure, including direct solar and the earth's

albedo and its direct radiation are to be studied is shown

U in Figure 1. In general, the orbital motion of the center of

mass of a space structure and the librational motion

about its center of mass are mutually coupled. The e-<tent :f

such coupling depends on the size and shape of the space

structure. The larger the ratio (x/rc), the larger is the

influence of librations on the orbital motion where x and

r. are the length of the space structure and the

distance of the structure from the center of the earth.

respectively.

The coupling between the two motions was first

studied by Lagrange while considering the librations of the

moon. One of the first studies in satellite librations was

carried out on a dumbbell-shaped satellite [451.

E5~ 1-9I- 9 'C
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Subsequently° there have been ni.tmeroua wor s on

dumbbell-shaped satellites regarding attitude

determination and coupled motion in circular and

elliptical orbits [_-0. 46-'5. All of these investigations

are confined to the rigid orbiting dumbbell and are under

the =ole influence of the earth's gravitational field.

As noted in the previous section, in recent years.

there has been a tendency to focus the major research

efforts towards very large and flexible space vehicles in

response to various mission requirements. These flexible

structures possess a potentially large source of elastic

energy. Early work, accounting for the satellite

extensibility, was carried out on the dumbbell-shaped

satellite (for example, see E55. 56)). However, these works

were confined to a circular orbit, only the gravitational
force effect, and employed reduced (simplified) equations of

I.

motion. Later, greater generality was introduced in the

derivation of the equations of motion and in the studies of

stability, dynamics, and control of flexible space

vehicles E-3, 57-62]. These studies show that elastic

deformation or flexibility of a space structure has

certain effects on the stability, performance, and

overall body orbital motion. In these works, actual

analysis to obtain a solution is based on only the

gravitational force effects and in some cases.

gravitati_ n l force and solar -adi ation effects o n

i , 4
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the orbital or attitude motion separately. More

recently, algorithms which enable one to simulate

numericstll/ the large motions of unrestrained and

restrained space structures have been developed [6-, 441.

Fundamental Ejuations of Motion

ON

The geometric configuration which is under consideration

representing a very large space structure consists of

two point masses, ml and m 2-, connected by an aieillv

flexible link structure which moves in a general

non-circular orbit (Figures 1 and 2). The weight of the l. k

S structure can be considered to be negligible in comparison

with the weight of the total system, and thus for a light

weight system the mass of the linked structure mav be

P taken to be lumped at the two ends. This dumbbell structure

is assumed to move in the orbital plane (coplanar motion).

.'a It is also assumed that the orbit of the structure is

defined by the motion of its center of mass C. There are
'.

5' two important reasons in chosing this dumbbell model to

represent a space stru;cture. First! the dumbbell

ow configuration is employed to facilitate the study of

differential gravitational force effects. Second, the link .

joining the two dumbbell masses can be considered to be a.

S plate-lde structure which, in turn, may well represent ak

.ery 1 ar.e tr'ts-I i 1e tr,,ctre. It has been _Lrrent .

- Nb '.,: ,.&. _._, t ,-,." r , '.',. . .- .. . ,., ', . - ' ,. ..- . ., ' , , ,, .", " ".'.'
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en,,i ioned tha- a =tr.ng -andidate for A 1-w- a ss

and high-stiffness structure is an open-truss nonfiguration,

The eQuatiOns of motion of such a =tructure moving

in an orbit around the spherical earth of radius RE whose

center is -At point 0 (Figure 2) will be derived using

Lagrange's procedure. The generalized coordinates of the

problem will be (1) the radial distance rc between the

center of the earth and the center of mass of the space

structure. (2) the angle E describing the sweep of the

radial line rc in the plane of motion, (3) the distance x

between the two dumbbell masses ml and m-, and (4)

the angle 0 between the local vertical line OC and the line

joining the two masses.

Kinetir energy. The total kinetic energy of the

system with respect to earth-fi',ed ax.es (XI. YI.

ZT) (Figure 2) can be determined quite readily (see

Appendi': A) and is given by

1

IE = - ) {mEbcz + (rcf ) I + mI E ' ,I 2  + x: 2 ' - + ( )

+ + + , (0 + i.) ]) . "

where

m = mI + m- 2.

and

1 i and "2 are the distances of the masses, ml and m-

fr om the C. M. of the space structure C , respecti vely -And I

-Ar-e i%,en ty

I

'* . 4 . • ' . , °,. " .. . . . . . . - °" ' -. 1 "• .°° . . * ° " .- . ° ..J " .4 --.-. V,/ . ° -4 . " . ° .. 4'/ .4•,
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(b) " 2  = (m2m) x

(c) x 1 +

~(2.3.)

~., The first term in the right hand side of Equation (2.1) is

the kinetic energy of the mass center of the system, and the

second and third terms represent the kinetic energies of the

masses ml and m2 , respectively. Noting the reduced mass

= (mlm2)/m  (2.4)

the above equation (2.1)can be written as below

1
.. E = ( - ) .m[i c 2 + (rc4).,J + ,1,. + _<(3 + 0. ) (2.)

Potential energy. Of all the external forces acting on

the system, the force- .-iven below are conservative in1
, nature, and hence, can be derived from a potential function.

*. (a) The earth's gravitational force on the point

masses can be derived from the well-known potential

* .. function (Ref. 67, pp 287; also see Appendi'x A)

Vg -- n-- (2.6)I "rl r2

where

p= gRz" (2.7'

is a constant quantity. g represents the acceler. tion d.e



-m~ig

I- 16

m
to gravity at the earth's surface, and R is the radius of

the spherical earth. r 1 and r- are distances of the

mass centers of masses. ml and m- from the center of the

earth (0). respectively. These are given by the following

relations.

'a) r I  = [r,-2  + x + 2rcx.Cos4]!i

'b) r 2 = Erc 2 + " 2rc;-, 7Cos03i

V (2 . 8 )

(b) The attractive force between the two masses

mI and m 2-' can be obtained from the potential

function as given below
a..

Vm = -(Gm lm )/-, , ' W
'

where G is the Universal Gravitational Constant.

(c) Lastly, the force produced due to the deformation

of the structure can be derived from the strain

energy Ue. Expressions for U e will be derived in the

sections below for various operational parameters of the

space structure.

Thus, the total potential energy of the system under

consideration is given by summing up Vg. Vm, and Ue

PE= - P - + --- ) - G ------- + . Ir 1 r2 X

Generalized forcin E functions. Besides the conservati',e

,'.ternal forces that are treated above, other e':tern~l
,e e. _
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forces which are nonconservative and which the system is

subjected to, are thermal forces and radiation pressure

forces. Within the framework of this study, these forces may

arise from (a) direct solar radiation, (b) the earth's

albedo and (c) its direct radiation. The mathematical

Ie-pressions to represent these forces will be presented

in the sections below. In general, these forces can be

obtained by the method of virtual work. Let Fi be an

external force, then the work dwi done by the force in an

infinitesimal virtual displacement or deformation d5i. is

dw i = Fi dSi (2. 11)

The generalized force Qi corresponding to the coordinate i

" is defined by

Di = dwi/dSi = Fi (2.12)

At present, it will suffice to represent the generalized

forces due to the above sources by Or, O?, 0-, and 0Qt

corresponding to the generalized coordinates r., 4), , and

0.. respectively.

General eguations of motions. For the generalizsd

coordinates and forces described above, Lagrange's

equations (Ref. 69, pp 277!), are

N.
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Id i
all

bKE  f-'E FPE "
a) (-) - + --- = ar6t 8) c  r c  brc

) 6K.E  6KE PE
(b) -- ( + -- + .. . . 19

E i:E P
8t e e"

3 6K E  15F:3 E F E -(d ) -- ( -..-..- ) + . ,
()t C) 0. e

(2.. 17)

where a dot indicates differentiation with respect to time, a
t. Upon substitution of KE and PE respectively from

Equations (2.5) and (2.10) into Equations (2.13) and minor

algebraic work (Appendix A). one gets

ml (rc + X, JCos0)
(a) m;c - mrc42 + - -..----------------- -

r I=

m2 (rc - -.:Cos0I)

----------------------------------------- O

(-I) I1"

(b) mrc(rcE + 2 Ec) - , .--- + --- :.rcSin = (0. -CI,)
r 1, r " .

.(:" 1+ r,-Cos0)
(c) mx - + i) 2 + E ' -----------------

(<.2 - rcCos0) Gmlm IUe
-- + +- ---- -,-----

-- * % .~ -' - , ,,
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d+ E + 0) + + ------- - xr n 0

'.14)

These differential equat ion s of motion are coupled

4 and non-linear. A study of the equations of motion reveals

that the basic parameters rcv H9. and 0 are

coupled to each other by themselves and by their first and

second derivatives. Therefore. the natural period of the

libration in 0 and the natUral period of oscillation in

* are seen to depend on other variables.
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Differential Gravitational Force Analysis

The effect of differential gravitational forces

acting between remote points is negligible for a small

system, but it is not so for a very large flexible

structure. particularly in low earth orbit [291. One of

the first studies of this effect, besides the classical

study of the oscillation of the moon, was on a

dumbbell-shaped satellite [70, 453. Because of the large

distances between masses at the ends of the very large

structure, gravitational effects cause secular motion of

the masses. Hence, these effects give rise to anomalous

overall structural motion (for example, see Refs.

[29- 7 7).

For a situation where the dominant external force .,

is due to earth's gravity alone, then

(a) Or = C) I'

(b) OA = o

(c) ., = )

(d) 0o = 0

(2. 15)

For an axially flexible structure, the strain

energy corresponding to axial force is

%U

4-

.* ~ .. .5..% . ~~%* *~*** **% *~***\ %~**%
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d~~~'Ue/d' = a : - s )  ,2

where Ka is the force required to stretch the structure

by a unit distance and is given by

a= csE/-s ""

in which, A., is the area of the cross-section of the e

structure, and E is the modulus of elasticity of the

material of the structure. Also " is the static stress

free (reference) length of the dumbbell structure.

The equations of motions are now given b,,

Equations (2.14) with the above values of Or, O@, 0'.

O,;o, and dUIe/dX. The equations thus obtained agree

completely with equivalent equations derived by Hall ard

Smith [79) when ml = m 2 and with no damping.

In the equations of motion (2. 14) the

gravitational force terms are as below: ,

The earth's gravitational forces on mass m I and m2

are. respectively

P ml (rc + Caste)
(a) Fg I  = --- I

m rl-'

m-i(r e - '"2CosO)
'b) Fg2 =------------ ----------

m

(? .-.-.

%.' ..a
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Total earth's gravitational force Fgon the system i-:
given by adding Equations (2-18a) and (2.18b)

m m1 (r,- + x 1Cosil) M-'(rc - 2O
g =---------------------- ------------------------------------------------------------------ 1 ( O

m

At time't = C. the initial total earth's grav,,tationa!

force on the system can be written as

W ml (r- + 1 c1CO5(O) m'r-
=( --------------------- " ~f

mr r1~ r

where the Subscript "' represent the corresponding

quantities at t = 0.

* The differential gravitational force AFg on the structu~re

2 can be obtained by Subtracting Equation (2.18b) from

Equation (2.l18a)
p in(rc + xlCos0) m-i:(r. - -cos!P)

AFg = -------------------------------------] 3 22
m ri

As we have seen in Appendix~ A, in the case where the

space structure is subjected to gravitational force only.

the second Lagrange's relation in Equations (2.17N yields -in

ex<pression (Equation (A-26)) which can be pu.t in sel;

adjoint form as below

d d
m --- (rc 2 e~) + M --.- .2 (e + J) 2) 1 : 2 2

dt dt-

Integrating this relation with respect to time, we have

*mr-2E4 + jW9+ (,1)2,,' constant '.T
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PThis e>xpression shows that the angular :TTtr'tU.;Ti

abOut tne center of the earth i s no longer a consa-tnt as it

Cl uld be in the case +or a single point mass 11-,

-an unperturbed or i t. Whi 1 e the total angular- momentum of
UP

the orbit must still remain constant, Equation (2.2> shows

that for the structLure this constant has two aaLJ 1

coirponents: the angul ar Mo M e, ttm idUe to the orbi tal

" ,: muti on and the angul ar mn omentum dLue to the 1 a bratory

* .notion. Hence, any change in the libratory component due to

varaton ii! and 0- must therefore be accompaniec Ov a

. .compensating change in the orbital component. Therefore,

tiere exists an energy exchange between orbit and

labration motion, and the orbit will be perturbed by

4 variations in ;, and ,0i. It is interesting to note that I-all

and Smith [79) reacned the same conclusion while

investigating the simplified (approximate) equations wf

'riot i on.

S4ir -.

a
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Thermal An alsi SU

In one orbit the structure will be exposed to a wide

range of temperature which can cause thermally induced

vibrations (for example. see Refs. [213. _3. and 1253).

thermal buckling, surface material degradation (for

example. see [22]). thermally induced nutational body

motion [243, and thermal stresses. Although for a structure

having a length of a few kilometers the temperature may

remain constant while it is completely in the sunlight

portion or on the earth-shadow portion of an orbit, there

may arise a differential temperature along the structure

while it is entering the earth-shadow and exiting from it.

This may give rise to thermally induced deformation..

possible skin buckling, and overall distortion of the shape

of the structure that may change the geometry sufficiently %*

so as to alter the attitude and/or render the system

incapable of carrying out its assigned mission. For example.

this could happen if a large antenna distorts sufficiently

so that it reflects the signal inaccurately [16].

It was observed that a thermal gradient gives rise to

anomalous spacecraft body motion. Spacecraft booms exposed

to solar radiation have been known to exhibit thermally

induced oscillatory instabilities (thermal flutter) [26-28].

,,
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This effect may well arise in very large space structure.

especially if they consist of structural cmponents with

thin open sections.

For any thermal analysis. an accurate determination of

temparature variation around an orbit of a strvcture 

space is most essential. This is done in the section below.

"Tenperature Vari ation

It can be deduced from the fundamental hypothesis of

the mathematical theory of conduction of heat in solids C8(]13

that, if there is no heat generated within, or radiated

away, the differential equation that defines the heat fl::Dw

I in a one-dimensinal structure is

.S.

62 T (-,. t) 6T (>t)
SM--------------C (2.Z24)KthV - - - --- M c =0( . 4

where

Kth = thermal conductivity

v = volume of the structure

M = mass of the structure effective to radiation

c = specific heat of material

= longitudinal length measured from the center of mass

of the structure

t = coordinate used to measure time

T = absolute temperature at the position at time t

V,. ., , ,, ...... ., ......,-.. ,.,..-...,-,-..-..... .... , . ....-.. ..,..-..-..
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If it is assumed that the structure radiates hezat

qout as a black body and that the heat input can be

defined by the function qin, then the thermodynamic

equation of heat conduction and radiation is given by

T ::t) 6T x t)

-thV M c ------- ,out(',t) - in ',,t) 2 25.

For a space structure of a few kilometers

characteristic dimension, orbiting at altitudes of our

contemporary concern. it can be assumed without

significant loss in accuracy, that the temperature

remains constant throughout the structure at a given -S

time. For example, in geosynchronous orbit a one

kilometer long structure travels fast enough to onter into

or exit from the earth's shadow in about 0.7 seconds. In

lower orbits the time is even shorter. Then, the above

thermodynamic equation will reduce to

6T (t)
M c ------ = in(t) - out(t) (2.26)at -

In general, the specific heat of a substance is dependent on" "m
pressure and temperature. However, theories show, and

experiments verify, the fact that there is very little

pressure dependence of the specific heat of solids until

e.-tremely high pressures are encountered which is unlikely P

..

• " , ,"- ,.. ' ,,,, ,'," -, -, " ,'." ,".. ' - ,, ¢.-, ' . <.,, 4 -,-' ?. '. .- ' , • • '.- . ' ." ", .-. ' . * .- ,•
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in the present problems. Even the temperature dependence is

slight for moderate changes in temperature. For example, for

sluminium at temperatures equal to 20 F. 572 OF, 1112 0 F,

and 1292 OF ( i. e., 0 C, C'C 0 C, 600 0C, and 700 C.

respectively) the values of specific heat are found to be

equal to 0.21C6, 0.2467. C.2821. and 0.2590 Btu/Ibm-OF.

respectively [87]. So. in the absence of any other

information, the specific heat of the solid under the

present circumstances is considered to be constant at a

value of 0.211 Btu!lbm-OF.
mr

An accounting of energy to and from, or stored in, a

space structure serves to determine the temperature of the

structure. The following assumptions are made in

determining the temperature variation in the structure:

(1) The internal heat generated by power sources, net

internal radiation absorbed, heating due to the impingement

of micrometeorites, molecules, atoms, ions, or atomic

nuclei. and aerodynamic heating although it may be

significant up to 200 miles above the earth's surface.

%. are ignored; (2) The material of the structure is

homogeneous and isotropic i. e., thermal conductivity of

the structure is constant; (7) The heat energy transferred

is assumed to be only radiative; (4) The temperature

remains constant throughout the structure at any specifi:

instant, so the temperature is - function of time only. (51

The heat absorbed at a point on the sunlight side of the

S" structure is proportional to the -:si re o4 the angle

-' " "p ".," '" "- ' " " -. . ,,' - , .€ -".,' .-. -' * . -. .- --- , 4 -'* ,* .,, , . ". " -*-* ,..-' o -. -.-' -.-- . . - •- . .
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between the surface normal and the sun line; (6) The main i

structure connecting the two end masses is considered to

be plate-like with mass (M); (7) The sun is a fi;ed

source of collimated electromagnetic radiation; (3) The -vpe

of orbit (polar, equatorial, etc.) is assumed to produce

only small changes in the structure. In actual practi,-e

the amount of radiation reflected and emitted from

the earth might vary with the type of orbit; and (9) The

earth and its atmosphere is represented by the earth alone.

Assuming the space structure is a black body, the

radiative heat output is given by

Cout = lAsdlT14 + E2TAsd2T24  (2.27)

where

= emissivity

= Stephan-Boltzmann constant

T = temperature of the structure as defined before

Asd = total area of one side of the plate-like

structure

Subscripts 1 and 2 refer to side I and side 2 of the

structure. AssuLming identical surface and geometri:

properties on both sides of the structure, the abc .

equation reduces to

%U
.2• ..! :..*. ,'2-~.~ S
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qoUt = Asf T 4  ( 8)

In which, total surface area Asf= 2 d and T 1 = T 2 = T.

The radiation effects received by a space structure are

of mainly three types. These are the major sources which

cause the change in temperature of the structure.

1 1. The most important heat source is direct solar

4 radiation.

- 2. The second source of heat is solar radiation reflected

4from the earth and atmosphere.

S..The last heat source is the radiation emitted by the

earth and atmosphere.

In brief,

qin = Direct + reflected from + emitted from

solar earth & atmosphere earth & atmosphere
i " (4s) (qr) ( le)

In this section, an expression to determine the heat

:4J. energy from each source will be presented.

Let us define the celestial sphere (Figure 3(a)) as

below: 0 is the center of the earth. The X, Y, - plane

coincides with the orbit plane (xoyo plane) of the space

structure. C is the instantaneous position of the center of

ma-ss (C. M.) of the structure. The direction of the Sun is S

inclined by an angle i' = ZS (see Figure 7a) from the

A
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Figure 3. Space Structure Subjected to Heating from Various
• Radiation Sources
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orbit normal (OZ). The J direction defines the direction of

the X I - atis and is the intersection of the orbit plane

and a perpendicular plane which contains the sun. The

instantaneous position of the space structure is defined

by an angle $ measured from the X I - axis.

The angle C is a measure of the orientation of the
.5.

plane of the orbit with respect to the earth-sun line. -

corresponds to the earth-sun line lying in the plane of

orbit. As the space structure revolves about the earth, it

passes from the earth's shadow into sunlight and back into

shadow again. When the structure is on the sun side of the

earth, the amount of incident solar and reflected radiation

varies with time. But, when it is in the earth's shadow the

incident radiation remains constant, because in such a case

the only radiation the structure receives is direct earth

radiation, which is constant at any altitude. Direct solar

and earth reflected radiations are zero in the earth's

-J shadow region.

Direct solar radiation heating. When the sun

heats a structure in space directly, the amount of heat

absorbed is a function of the surface absorptivity, as,

and the projected surface area normal to the sun flux. Thus,

the total solar heating is

s= " as Gs Asd :Coss: 22. C"

-P -................ .% .

4?.' '",-S. ,. " "- '" "A " -. A" "" "2 -" ". "Z" " " . '""" " " """'""w -"!"" """ .' .-. t"'." ' A,-t.., -." "; •..'.: :,.,t' J :,a..,. .. ':t€"&. J , "S. _ , .d '.' ?, 5? ',. .
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where is is the angle between the Surface normal and sun

direction (Figure 7a). The quantity within 1 indicates

the absolute value for the corresponding term. It is assumed

that the solar energy Flux G s is essentially independent

:f orbit altitude. This is the case in the present study

also. Asd is the total plan area of the structure and S i=

a step function which is given by

-P= 1 in the sunlight portion of the orbit

= 0 in the earth's shadow portion of the

J orbit (2.31)

In theory, it is possible that sunlight 'may be

incident on both sides of the flat plate-like structure. In

practice, it is very unlikely that a space structure will be

operated so close to the sun or at such an angle from the

perpendicular to the sun so that the backside will be

irradiated. Therefore, direct solar radiation incident only

on one side of the structure has been considered in the

above expression.

Earth's___ajbedo radiation heating. Albedo refers

to the influence of light reflected from the earth to an

* object in the atmosphere. The earth acts as a reflector of "

solar radiation. The albedo factor Ar is a measure of the

fraction of solar energy reflected. It has been shown by

Modest [70] that although the reflected heat is a

,N
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complicated function of attitude (H. 'Ei). sun's position,

and altitude of the space structure, good accuracy can be

obtained by using Cunningham's view factor Fel and Fe2

[42] in the following equation

..-

,. qr "(arlFelisdl + ar2Fe2Asd2)ArGsCosC for :', n w'2

= C) for r' - /2

m where a is the angle between the earth-sun line and the

earth-orbiting body line (Figure 3a), and ar is surface

absorptance to radiation reflected from the earth.

Subscripts l and 2 refer to side I and side 2 of the

plate-like structure. The view factors F= 1 and F _.-

reported by Cunningham. are given below

(a) When 0 " r (Tt/2 - r)

Fel = Sinzr COs~r

Fe2 = 0

(b) When (n/2 - r) r lr (i12 + r)

Fel = [SinZr Cosr Cos-1(-Cotr COtar)

+ Cos - l (Cosr/Sinrr)

- Cosr 4(Sinzr - Cos',r)./7

Fe2 = Fel with 3r = -r)

% ..

I
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U

where r is the angle between the line OC and a tangent from

C to the planet surface (Figure 3(b)). (r~ is the angle

between the line OC and the surface normal to the orbiting

struActure.

As is seen in the above relations, the view factor is a

function of the altitude of the orbiting surface, the size

of the sphere, attitude of the orbiting structure, and

other basic geometric quantities. The sphere (radiation

emitting body) is assumed to be gray and diffuse.

For a structure having the same surface and geometric

characteristics on both sides, Equation (2.32) becomes

qr = SarArts(Fel + Fe2)AsdCOSC for r;, T /2P

0 for u: i / 2

32.34)

Direct earth radiation heating., The heat absorbed

by a surface is a function of the surface absorptivity a.

and view factor Fe. The view factor between an orbiting

flat plate and a sphere was developed by Cunningham E42.

The amount of heat absorbed by the surface from earth

emission is given by -

qe= ae Ee( Fel + Fe2)Asd (2.75)

where Ee is the earth emitted radiation intensity. It can

:i-'? '5:-) ))" " ;; " " " '"". --... . * * *" "" " " *" " " " ' * "' . . . "
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be expressed in the following manner

E e  
2. _6

In which,

e = emissivity of the earth.

T e = temperature of the earth

T = Stephan-Boltzmann constant

The view factors are again given by Equations (2.77).

In deriving Equation (2.35) we have again assumed that the

surface and geometric characteristics of both sides of

the structure are identical.

Geometric consideration gives us the following

relations (Figure 'a)

(a) ar = (0 - n/2)

(b) Sinr = R/rc

* (c) CosA = Sini'Cose

'd) Cosa s = Sini'Sin(e + 0)

_ :The total heat energy input to the space structure now

is given by substituting Equations (2.(") 2.-4). and

S(2.35) into Equation (2.29).

.

.
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qin 5asGsAd:Costs + ( 'arArGsCosr °

aeEe)(Fel + Fe2)Asd for :r:. Tr/2

. &asGsAsdCOsns: + aeEe(Fel + Fe2)Asd for :r: ,: Tr/2

(2.33)
F-

The recommended average value of the earth albedo is

U.).0. The corresponding equivalent black body temperature of

the earth is 2540 K which leads to an average emitted

radiation Ee at the earth's surface of 27 W/m 2 (0.34

cal cm- min - 1 ) [74, 753.

Eguilibrium Temperature. The equilibrium temperature

can be determined from Equation (2.26) by setting the

left-hand side equal to zero

i. e., qin - qout = (2. )

Substituting Equations (2.28) and (2.38) into Equation

(2.39) and arranging terms, the following relation can be

obtained

SasGsAsdCosas + (SarArGsCosa + aeEe) (Fel + Fe2)Asd
Teq = ----------------------------------------------------

when Tr TT/2

E- SasGsAsdCOs3 + aeEe(Fel + Fe2)Asd.

when : - .

4 %

.5; "U
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*here Teq is the equilibrium temperature.

Equations of Motion

Generalized ForcinQ Functions. Let 0 th be the

external forcing function due to thermal effects on the

structure. Then it can be written that

"'* Ox = Oth (2.41)

Since the force 0 th does no work when x is kept fixed and

other variables, namely, r, e, and 0 are varied, it follows

that the generalized forces Q Q Oc, and 0q

* corresponding to coordinates r., e, and 13, respectively . are

* equal to zero. That is,

(a) Or =

* (b) Oe 0

" (c) Ri = C)

CC (2.42

If only the axial deformation is considered, the force in

this direction due to temperature variation in the space

ft - - -.. , - =,.,- - -,,--- m ,,"' ' ""'iJ " ' - ' :""' i. 
: - ' r ' ' ' ' '

""* " " * " 
" ' "
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structure is given by Booley and Weiner [871] as:

'?th E-'th(T - Ts ) + ' th(T - T s )d A ]  (2.4-)

Here. ath is the coefficient of thermal expansion or

contraction and Ts  is the reference temperature "

Other notations are as defined earlier. In a case

where the temperature is only a function of time.

Equation (2.47) gives

.
0 th - - (2. 44)

i. e., the axial normal stress due to temperature change is

:ero. But, there will be a thermally induced strain. Thus,

the expression for strain energy will be different than that

when the temperature effect is not considered.

Strain energ... The total strain energy, Ue is given

by

Ue = (Volume)(Strain Energy Density) (2.45)
,."

Or Ue = (Acs) [(1/2)EE,.2 (2.46)

where. 4... is the axial normal strain under the mechanical

loading.

The structure can be considered to be subjected to

q . ao
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(fir-st) only a thermal effect which Caus~es the strain

th (T - T. and (second) only, a m-echan ical effect

which Cau~eS the strain. ~E.The total normal strain,~

~T is then given by

.T='Yth (T 73 + ~, *47'

Therefore,

.-T - th(T -TS) (2 .48)

The total normal strain is also given by

=I (x->'Zx 5 (. 49)

Upon Substitution of Equation (2.49) into Equation (2.48).

we get,

d. 
-

* -Substituting for EN. from the above equation into Equation

('2.46), we obtain,

t S
Ue = --- AcsxE C----------- 'ath T -Ts)] )'2(2. 5 1

j The quantity (dUe/d ,) is now

VI~

A :4*t FP 2
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dUe/d: - - (: - : ) - AcsE,(T - T s )  (2.52

where, the thermoelastic property in the longitudinal

direction is

E,) = E ')th (2.5 )"

The equations of motion of the space structure are now

given by Equations (2.14) where the generalized forcing

functions are given by Equations (2.41) and (2.44). and the

quantity (dUe/dx) is given by Equation (2.52). These

equations contain the effects of gravitational and thermal

forces.

Effect of the Earth's Shadow

To evaluate the effect of the earth's shadow. we must

know the values of angles E i and Ee at which the space

structure enters and exits the earth's shadow. respectively

(Figure 4b). Without appreciable error, it can be assumed

that the shadow is a circular cylinder of radius R. The

intersection of the orbit plane with this half-cylinder is a

semi-ellipse as shown in Figures 4 (a and b). Its equation

4. in the coordinate system described above is 171]

xi 2 Y 1 23

------ --- = 1 (X I  0) (2.54)

3 n
k 22 b

% A : . .* ~ 4*. . .~% ~



-41

(a) To Sun

xyI
Right Circular"' cylinder -'

Intersection of the
Orbit Plane and the
Earth's Shadow
Represented by the Right Circular
Cylinder (Shadow Boundary)

.Y

Point of entry Direction of motion of
into shadow space structure
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region

.- un

I Projection of earth -

Sun line onto orbit
plane
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Figure 4. (a) Geometry of Shadow Boundary and (b) Passage of
a Space Structure Through the Earth's Shadow
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Since a R/Cosi' (Figure 4b) 2.55)

we have.

X1 -Cos-i' + YI = R2 (X I  - 0) (2 6-

In polar coordinates -I and yl can be represented as

(a) XI = rSbC°S-

(b) YI = rsbSin"-
U2.5)

Thus. the above Equation (2.56) can be written as

R. E 7T T_

S--- -- -- -- -- (2.58)
1 - Cos2 9 Sinai' 22-

where rsb is the radial line describing the shadow

boundary.

To obtain an analytical solution of the equation

except for a circular orbit is next to impossible.

Therefore. this equation should be solved numerically in

a conjUction with the equations of motion (2.14) for every

revolution. Hence, in general, to determine angles the

9i and ee, the above equation for rsb is equated with

that for rc of orbit of the structure. As the value for

rc at a certain time t is evaluated numerically, the above

" Equation (2.58) should also be evaluated with rc = rsb.

If this equation is also satisfied, the corresponding Value

"..--
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of 9 is *i or 8e . The following conditions are of

importance:

(a) If rc rsb for all time, then the space structure

is in sunlight continuously.

(b) If rc = rsb and w/2 --9 3 w/2

the structure crosses the shadow boundary.

(c) If rc rsb and r/2 . Th/2

the structure lies within the earth's shadow.

(2. 59)

i The angle i' is required to be computed every few

days. The angle i' in Equation (2.58) is found from the

equation below E713.

Cosi' = Cosi.SinS o + SinioCosSoSin(,xN - ')o) (2.6))

A•e !where io is the inclination of the orbit plane to the

-, equator, and a. and So are the right ascension and

declination of the sun respectively, and 'xN is the right

ascension of the ascending node.

• ' .

P



m

1-44
Ii

Radiation Pressure Anal 2is

Ever since the first exhibition of solar radiation

perturbation effects upon an earth satellite (the Vanguard

I, launched on March 17, 1958). many aspects of solar

radiation induced orbital perturbations have been studied

"[ 734-41]. In particular, the anomalous behavior of the Echo I

balloon satellite received a great deal of attention [353.

Similarly, solar radiation pressure on PAGEOS was found to

give rise to spin and precession torques [40] and affect the

orbit of the satellite [41]. The effects of solar radiation

pressure on a gravity gradient satellite E3] and the

Communications Technology Satellite [83 were also

investigated. The feasibility of utilizing solar radiation

forces for controlled orbital transfer was assessed quite

early in the space age. In 1958 Garwin [171 envisioned an

exploration of the planetary system by means of large solar

sails made of aluminized Mylar. The concept was further

substantiated in subsequent studies [18-20, 79). This effect

depends almost exclusively on the distance from the sun.

Thus it may be nearly constant within the altitudes of

contemporary interest.

Besides direct solar radiation, terrestrial radiation

is also important. The earth radiates energy over a wide

range of wavelengths and particularly in the infrared and

*.6,

. '2 ',i . €2 . 2 €2 " .€ 4.v',L>>-'..' 2" 'a.
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optical regions of the spectrum. The infra red is largely a

re-emission of radiation received from the sun at other

wavelengths. This is henceforth referred to as direct

ro radiation from the earth and its atmosphere. On the other

hand, the radiation in the optical wavelengths is a

reflection, both diffuse and specular, of the incident

sunlight. The reflected radiation, measured as a fraction of

the incident radiation, is called the albedo. The mechanical

pressure exerted on an orbiting body by terrestrial

kradiations has been recognized long ago for near-earth

satellites. The effects of terrestrial radiations

exclusively depend on the distance of a space vehicle from

the earth. The larger the distance, the lesser will be the

effects. A study by Flanagan and Modi E773 revealed that

- below 6000 miles altitude. the earth-emitted and -reflected

radiation pressure effects should be considered although

"* these effects are smaller than that of direct solar

9 .radiation. Numerous studies have been done to determine

the effects of the terrestrial radiations upon the orbit

of a space vehicle [see for example ref. 84 through 88).

All of these studies showed that the terrestrial radiations

affected the orbital elements of a satellte. More

recently, Zerbini showed that the earth's albedo affected

the orbit of PAGEOS I 141].

In addition to orbital perturbations, the radiation

pressures can also affect the attitude motion and structural
4 -

~ ~ .-.-
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deformation of a large flex-ible space structure. In the

early nineteen seventies, Modi and Flanagan E89, studied

the attitude dynamics of a gravity oriented satellite under

the influence of direct solar, direct earth, and earth

reflected (albedo) radiation pressures. Their study revealed

a relatively small effect from the terrestrial radiations.

This may be the reason that research on the attitude

dynamics of a space structure has simce then been centered

around the effect due to direct solar radiation pressure

only (for example, see ref. 91 through 95). As far as the

effects of radiation pressures on the structural

deformation is concered, very little has been understood

to date. A study conducted by Krishna and Bainum [901 of

uncontrolled and controlled dynamics of a thin flexible

beam in orbit in the presence of direct solar radiation

disturbances suggests that there can be deformations of

space structure due to radiation pressures. For a very

large space structure which will most probably have a large

area-to-mass ratio, there is no doubt that the effects of

radiation pressures are very significant.

Light Pressure

Before proceeding further. a brief account of the

fundamentals behind the mechanical action of light exerted

on reflecting and absorbing bodies called the "Pressure of

Light" will be presented. Maxwell developed the

Z. Z- -ZA - -Z--
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electromagnetic theory of light in 1872. An e-.perimental

verification that light waves exert a pressure was achieved

by the Russian physicist P. W. Lebedev in 1899.

M Theoretically, the pressure of light can be interpreted on

t- he basis of Maxwell's electromagnetic theory of light or

from quantum theory. According to either theory, the

pressure exerted on a surface by a plane electromagnetic

wave which falls on a normally oriented reflecting surface

is given by

p = S (I + Cr)/v I [force/length] (2.61)

where S is the power of the incident electromagnetic wave

per unit surface (erg/cm2-sec), and CrS is the power

of the corresponding reflected wave (erg/cm2 -sec). Here

, Cr denotes the reflection coefficient, and vI is the

speed of light. In the above expression, the energy

consists of the energy of both incident and reflected waves

(Figure 5).

In a general case, if a surface is oriented at an

angle as with respect to the light ray, the radiation

pressure is

p = [S(1+Cr)/v l ] cos-ras  (2. 62)

For a celestial body which is at a distance di from the

pq
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sun, the solar constant S for this distance is determined

by the formula

S = S O (do/d i ) 2 (2. 6)

where do is the mean earth-sun distance, and SO is the

Solar Constant" which is the power of solar radiation which

: !falls on a unit area of earth surface per unit time and has

the value

*' S o = [2.0 + O.04]cal/cm2 -min = 1.-5 x1O6 erg/cm2 -sec

This shows that the light pressure is very small even for

such a powerful radiation source as the sun. Substituting
Equation (2.67) into Equation (2.62), we finally obtain.

P = ESo(l +Cr)/vl][do/d32 Cos3 s  1.

For a space structure orbiting around the earth. di =d o

• -for all practical cases. Therefore. Equation (2.64) reduces

to

P = [So( 1 +Cr)/Vl]Cos52 s (2.65)

4 ' -/The acceleration experienced by a body of mass m and

JI effective area A under the action of radiation pressure can

be determined by the formula

0..
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a = p A/m [length/time-] (2.66)

The quantity (A/m) is a parameter called the "area-to-mass"

ratio. This quantity is generally constant for each body,.

and is of decisive importance in estimating the effect of

radiation pressure on the motion of space structures.

The gravitational force of the sun and the force due

to solar radiation pressure act in opposite directions. If a

space structure (for example a gas-inflated balloon of the

type "Echo 1") is of spherical shape, then the sun's

gravitational force is proportional to the volume. i. e.. to -

a. , where a is the radius of the sphere, whereas the force

due to radiation pressure is proportional to the effective

area, i. e., to a2 . The ratio of these forces is

proportional to 1/a. So, in the case of a light sphere of

sufficiently small size, both forces can balance each other, 1

or the radiation pressure force can exceed the gravitational

force of the sur. If the latter case is true, the body will .:

leave the solar system under the effect of radiation

pressure. This is precisely the principle behind "Solar

Sailing" - employing solar radiation pressure on a space

ship to create a small, steady thrust for .nterplanetary W

voyage. Motion of this kind would take place along a spiral % a

orbit and a change in the orientation of the sail with

respect to the solar radiation from which it acquires its

power would permit it move toward and away from the sun

%1
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Forces and Moments due to Radiation

The chief sources of radiation which cause forces and

"* possibly torques on an orbiting space structure are:

1. direct solar radiation,
4.

. 2. solar radiation reflected by the earth and its

atmosphere,

direct radiation emitted from the earth and its

atmosphere, and

4. radiation emitted by the space structure.

The analysis of the last source requires knowledge of the

temperature in the structure, and, in general, it is a much

smaller effect compared to the first three cases. However.,

there are special situations when this effect is also

comparable to the other three. For example, the pressure

experienced by emission from a "black " flat plate receiving

solar radiation (and thus emitting the same amount of

radiation) is equal to two-thirds of the pressure due to

direct solar radiation [773. The space structure, in

general, does not act as a "black body", and, moreover, it

emits radiation in all directions, thus tending to produce

no resultant force. Hence, for these reasons, this effect

will be neglected in the present analysis.

Padiation pressure on a surface is a function ,of it=

L_14aZ.Z 14 10
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absorptivity (Ca) reflectivity (Cr. specular and Crd,

di+fuse), and transmissibility (Ct ) as well as its

position relative to the emitting body. Further. Ca,

Crs5 Crd, and Ct themselves vary with surface

temperatures, the wave length of the incident radiation and

the angle of incidence. It is also possible that the

surface properties including Ca, Crs , Crd , and Ct of

a particular space structure may change with time as a

result of external factors. However, such variations are

generally small and will be neglected. Some other small

effects which will be ignored in this study are: (1)

possible variations of the solar constant; (2) the small

change in the solar distance; (3) the slight motion of the

sun in right ascension and declination; and (4) the

Poynting-Robertson effect, which is ascribed to the action

of radiation pressure and is conditioned on the nonvanishing

velocity of a space structure in a given reference frame and

has relativistic background 185, 86].

Let us consider the general case as shown in

Figure 6. The incoming radiation of intensity I (parallel

to the unit vector el) makes an angle Ai with the normal

n to the surface element dA which has radiation properties

Ca, Crs, Crd, and Ct (Coefficients of absorption,

specular reflection, diffuse reflection, and transmission,

respectively). The radiation, after striking the surface. is

partly absorbed, partly reflected specularly. partl.

m -5-
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reflected diffusely. and partly transmitted by the surface.

The specularly reflected radiation (parallel to the unit

vector e-) makes an angle Cr with the surface normal n.

P! The unit vector e- perpendicular to n and coplanar with n,

21. and e- can be defined by the relation [773

g- = 2x (eixn)/SinCi  (2.67

If the surface is assumed to be a specular reflector,

L geometric optics gives ai = Cr- Continuity demands that,

at the intercepting surface,
;* r"

Ca + Crs + Crd + Ct= 1 (2.68)

According to Einstein's electromagnetic mass-energy

equivalence relationships, the incoming photons may be

considered to have an equivalent mass

Eph = mphvl (2.69)

where Eph and mph represent the energy and mass of

radiant energy, and vl, the speed of light. From this, the

photon equivalent momentum P-Ph may be expressed as

-PPh = mphVl = Eph/vi .2 S

5'.-

4o6

*,
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The force developed as a result of photon momentum transfer

at a surface is entirely defined by the vector relationship

*..

OM

F =dPPh/dt (2.-1)

For an intercepting plate that is arbitrarily oriented. the

incident energy is given by

E i  I CosaidA (2.72)

The power density I is the energy per unit time through a unit

area. Thus,

,[ :} dF~i -"-(I/vI )CosalidA el (2.77'5) .

where dFi is the force due to total incident radiation

energy (see Figure 6).

Let us define a fundamental quantity.

Pf I/v( 74)

pf is the radiation pressure (force per unit area) acting

on a nonreflective surface normal to the incoming radiation.

Now.

dFi = -pfCosr(idA el (2.75)

%U ,,
,.-A.. '-' . .'" ''t' . " r-' . " ' ,. , . % . . -" ". .,. " -- t -.. . . '' - .,- -
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I
The specularly reflected light produces a force.

dFrs = -Crs(PfCosri~ d A e2 (2.76)

The outgoing momentum of diffusely reflected photons

mAy be calculated by integrating over the hemisphere and

making use of the symmetry about the normal to the surface.

It is apparent that the tangential components of outgoing

momentum will be cancelled due to symmetry leaving only the

normal components to integrate over the hemisphere (Figure

7b). The result shows that the effective momentum transfer

to the surface due to to outgoing diffusely reflected

photons is just two-thirds what it would have been if the

same number of photons were reflected along the normal [97,

98). That is.

dFrd = n(2/)CrdPfCosfidA n (2.77

Lastly, the force produced by the transmitted photons

is

dFt = CtpfCosaidA eI (2.79) i

The total force on the element of area dA can be obtained by

adding Equations (2.75) through (2.76), which is.,

" - '"- -"- -"-'. .""" """ ,". """" - """ ,: "v - "",- . -- -. " -• - x " -- , ..- ' .-- " " "-" .-. -"-"-.. ",'. -'y -U -'
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dF = - pfCosa3idA EeI + Crse2 + (2 /3 )Crdn- - Ctel (2.79)

Resolving e and e2 in the n and e3 directions (normal

and tangential components), we get

_ = Cosi n + Sin(3ie3 (2.80)

e 2 = Cos3in - Sinaie 3  (2.81)

Making use of these relations in Equation (2.79)

dF = -pfCosaidA Et(1 + Crs - Ct)COsAi + (
2 /3 )Crd)n

- Crs -Ct))Sin ie3 ]  (2.82)

4 Separating into normal and transverse components,

1

q . dFN -pfCosaidA [I(I + Crs - Ct)Cos i

+ (2 /3 )Crd)n (2.83)

dET -pfCos3idA (1 - Crs -Ct)Sinie3 ] (2.84)

S".The force dET parallel to the surface will act to

_ translate the spacecraft (move sideways) but, in general,

- will not act to rotate the spacecraft [753. However, it is

not always safe to assume that the radiation force parallel

" to the spacecraft surfaces does not produce torque - both

forces perpendicular to the surface (which often produce

torque) and those parallel to the surfaces (which may also
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produce torques) should be considered.

Let us now deduce the elemental radiation pressure

force expressions for some special surfaces.

1. For a well-insulated surface at equilibrium,

Ct = 0 and Ca + Crs + Crd = 1 (2.85)

Equation (2.82) becomes

dFI = -pfCosidA [{(1 + Crs)COsdi + (2 /3 )Crd}n,

+ ( - Crs))Sinlie3] (2.86)

2. For a completely absorbing surface

Ca I and Crs - Crd - Ct - 0 (2.87)

The governing force Equation (2.82) becomes

dFA = -pfCosidA [Cosdir + Sinai23]  (2.88)

'p"

3. For a perfect mirror (i. e., a completely specular reflecting

surface)

Crs 1 and Ca = Crd = Ct = 0 (2.89)

The radiation force Equation (2.82) reduces to

dErs = -pfCos'4idA n (2.90)

4. For a completely diffuse surface

Crd - 1 and Ca - Crs = Ct - 0 (2.91)

The force on the area dA is given by (Equation (2.82))

dFrd B -(2/3)pfCosaidA a (2.92) U

-"-1

-. '. . .4. _S' "
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Metals tend to have Crs > Crd while paints, black

as well as white, usually have Crd > Crs. In the absence

of specific information it has been customary to assume

Crs = 0 for paints and Crd = 0 for metals. The

effects of such assumptions upon the torques are not large

(typically 1 20 percent) [75].

The equations of motion of the space structure under

the influence of the earth's gravitational force and the

forces due to radiation pressure are again given by Equation

(2.14). In this case, Grp Oe, Ox, and 0 are forces

* and moments due to the radiation effects. Or is the force

along the rc vector; Qe is the moment about the center

3of the earth (0) axis; Qx is the force along the length of

the structure; and go is the moment about the structure's

• *- center of mass (C). These external forces and moments are

qcomplicated functions of many parameters pertaining to the

sun, earth, and the structure. Clancy and Mitchell [733

.- derived integral relations to express some of these forces

and torques acting on an arbitrarily shaped satellite under

the influence of the three sources of radiation mentioned

above. On the other hand, Flanagan and Modi [773 derived

closed form relations for some of these forces and torques

acting on a flat plate shaped space vehicles under the

oinfluences of the above radiation pressure disturbances.

However, these expressions for radiation forces and

torques are too complicated and also incomplete for the

'\ . - - ** * . . . - . * - , ' * .-.. |. - * %~
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present analysis. Therefore, a simpler, practically

feasible, and complete set of relations to express all the

radiation forces and torques required in the present context

will be developed below. For this purpose, it will be

assumed that the sun lies in the orbit plane, and the

earth-sun line is coincident with the X I axis. Of

course, this will give the most severe solar radiation

pressure effects. The space structure surface will be

considered to be completetly absorbing. Also, as in a

thermal effect analysis, the space structure will be I

considered as a flat rectangular plate and has both dynamic

and geometric symmetry.

The direct solar radiaionpr essure. Consider a

space structure represented by a flat plate undergoing a

planar librational motion (Figure 8). At present, the sun

is in an arbitrary position inclined at an angle i' from the

normal to the orbit plane. P is the center of radiation

pressure at the structure. The distance from C (c.m. of

the structure) to P is lp. Here lp is positive along

the positive x-axis and rp is the distance of the center

of pressure P from the center of the earth 0. rp is given

as below

rp = [rcz + Ip' + 2rclpCos ]1 (2.93)

where lp is given by

°U

• , - • • ... ... ° -,, • .• ... -°° • ° ° . .-. . - A .
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ip = x- (x/2) for mI 4 m2

= (x/2) - x2 for ml 1 4 m2

(2.94)

in which, xj and x2 and x are given by Equations (2.3).

For a plate structure with uniform rectangular cross section

1p is positive when mIl < m2, negative when ml m2 ,

and zero when ml = m2. Hence,

(a) For mI Z m2

the maximum value of rp = rc - Ip at 0 = w; and

the minimum value of rp = rc + 1p at 0 = 0
*.*

(b) For mI m2 m

the maximum value of rp = rc + 1p at 0 = 0; and

the minimum value of rp = rc - Ip at 0 = wj

(2.95)

The force on an element of area dA of the structure due to

direct solar radiation, which is taken parallel to the

earth-sun line amd constant over the spacecraft's orbit, can

be written as (refer to Equation (2.79))

dEds - -8 Pds:COsss [(1 - Ct)Ss + Crsgr + (2/3)CrdnldA

99) (2.96)

where S is 1 in the sunlight side of an orbit and is 0 in

the earth's shadow side of an orbit. as is the angle of
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incidence of the direct solar radiation flux on the plate,

and Ssp 9r, and n are unit vectors along the incident

light, reflected light, and surface normal respectively. The

positive sign conventions for these unit vectors are as

shown in FigureS. The quantity within : indicates the

absolute value for the corresponding term. Pds is the

- direct solar radiation pressure (force per unit area)

acting on a surface normal to the incoming solar radiation

and is given by

Pds So/vl (2.97)

in which SO is the solar constant. Equation (2.96) agrees

- with the equivalent equation derived by Wertz [96]

when Ct = 0, and with the corresponding equation

derived by Flanagen and Modi [773 for Crd = 0.

Let us now express the direct solar radiation pressure

force in body coordinates (x, y, z) and orbital coordinates

O(x, YO Zo)"

1. In body coordinates, we may write

(a) Ss = Si + S2i + S3 k

(b) Sr = Srli + Sr2l + Sr3i

(2.98)

where,

.-.. " •v ... ".'-' ,' ." .. '.,.-. ' . . . . ...,." :,''' .. . ... -. .. ... ' . .... ". ... " " - -.-.... "<2
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i, j k_ = unit vectors along x, y. z axes,

respecti vel y

S1, S2, S3 = components of Ss along x, y, z,

axes, respectively

SrlP Sr2, SrZ = components of Sr along x, y,

z axes, respectively

Substituting for Ss and Sr from Equation (2.98) into

Equation (2.96) and noting that n = -j, the total direct

solar radiation pressure force on the flat plate can be

written as:

Eds = -S PdsCoss:Asd[C(1 - Ct)S 1 + CrsSrli

+ ((1 - Ct)S2 + CrsSr2 - (2 /3 )Crd i)

+ "1 - Ct)S3 + CrsSr3)k]

(2.99)

where Asd is the area of the plate effective for solar

radiation (here, one side of the plate).

2. Similarly, in orbital coordinates, we can write

(a) 9s = Solio + So2lo + So3k o

(b) gr = Srolio + Sro2lo + Sro3ko

(2. 100)

where,

io, ik = unit vectors along xo, yo,

Zo, respectively

U* (5 * *.5 .' ~ **'***
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n Sol, So2, So3 = components of Ss along -o,

yo, zo axes, respectively

Sro I 5 Sro2, Sro 3 = components of Sr along

xo, yo, zo axes, respectively

m% The total direct solar radiation pressure force on the space

structure in orbital coordinates can now be obtained by

substituting Equations (2.100) into Equation (2.96), which

is given below:

Fds = -' Pds:Cosas!Asd[{(1 - Ct)Sol + CrsSrolio

+ C1 - Ct)So2 + CrsSro211o

+ ((1 - Ct)S o 3 + CrsSro3) k o

+ (2 /3 )Crdn] (2.101)

Geometric considerations give (Appendix B)

p

(a) S1 = Cos(e + O)Sini'

(b) S2 = -Sini'Sin(O + 0)
( ) S 3  = -Cosi' 

.1 2
(c) =(2. 102)

(a) Sri =-S 1

(b) Sr2 = S2

(c) Sr3 = -S 3

i (a) Sol = Cos9Sini'

(b) So2 = -SinOSini'

.U
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(c) So3 = -Cosi' i

(2.104)

(a) SroI = -(SCos0 + S-,Sin0)

(b) Sro 2 = -SSinO + S2Cos0

(C) Sro3 = -S 3

(2. 105)

Also, it can be easily seen that

oii
Cos~35  Sini'Sin(e + 0) (2.106)

Now, let us impose the assumptions that the sun lies

along the XI axis and that the surface is completely

absorbing which requires that the resultant force be

along the direction of the earth-sun (or structure-sun)

line. With these assumptions, we can write

(a) i' = w/2

(b) Ca = 1

(C) Crs = Crd Ct = 0
(2.107)

and then,

Cosas = Sin($ + 0) (2.108)

In such case, the total forces on the space structure due to

?I 
....
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Udirect solar radiation can be directly obtained from
Equations (2.99) in the body coordinates and from (2.101)

in the orbital coordinates as below:

_Fds = - PdsICOSas:Asd(Sli + 2)(2.109)

in body coordinates and

.- Eds -S Pds:Cosas5Asd(SoliO + So2jo) (2.110)

in orbital coordinates.

The direct solar radiation force along the rc-vector can

be obtained from Equation (2.110) as

(Qr)ds = -S PdsICOS3sIAsdSo1 (2.111)

where Sol is given by Equation (104a) which is now

Sol = Cose (2.112)

Taking the anticlockwise moment to be positive, the moment

about point 0 (center of the earth) is (see Figure 9)

(Q)ds= idsFds (2.113)

where

ds= rcSine + lpSinh (2.114)

9 + 0 (22. 115
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ip can be positive or negative and is given by

Equation (2.94). From Equation (2.109), magnitude of

Eds is:

Fds = S Pds:CosisAsd(S1A $2) (2.116)

in which, from Equations (2.102a and b)

(a) S1 = Cos(e + 0)

(b) S 2 = -Sin(e + 0)

. (2. 117)

The direct solar radiation force along the length of the

structure can be deduced from Equation (2.109)

5 (OXds = - Pds:COsas:AsdS1 (2.118)

Lastly, the moment due to the direct solar radiation

pressure about the point C (c. m. of the structure) is given

by (see Figure 9)

(Q0 )ds S Pd:CoaS:AsdS21P (2.119)

The numerical value of the direct radiation force 'ntensity

can be taken to be Pds = 4.66x10-0 6 Newton/meter [753.

i" °°
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The terrestrial radiation pressure. As we have

already mentioned, terrestrial radiations are of two kinds -

one, radiation emitted directly from the earth and its

atmosphere and two, solar radiation reflected from the earth

and its atmosphere (albedo). The disturbing effects of

direct solar radiation are well known and understood, but

comparatively little attention has been given to the

indirect effects of radiation re-emitted or reflected from

the earth. This lack of attention is probably due, partly,

to the fact that all estimates of the latter effects suggest

that its magnitude is considerably smaller than that of

direct solar radiation, and partly, due to the fact that the

problem is much more difficult mathematically.

Earlier investigations by Wyatt [843, Shapiro [853,

Sehnal [863, and Prior [88] give the maximum estimated

perturbations of orbital motion due to the terrestrial

(direct earth and its albedo) radiation as to be 25 percent

of the direct solar radiation pressure. The effect from

terrestrial radiation pressure on the attitude motion is

reported by Modi and Flanagan [893 to be relatively small

compared to the direct solar radiation pressure. In the

present study, we intend to investigate the effects of

radiation pressure on the axial deformation of the

structure. Since the space structure is usually very

light, flexible, and may have very large area to mass ratio,

we have included the terrestrial radiation pressure

7:
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effects in our investigation.

- Instead of going into unnecessary detail, we intend to

investigate the terrestrial radiation pressure effects for a

"Y

specific orientation of the space structure which will give

us the maximum effects. Levin [763 examined the relative

contribution of reflected radiation from the earth and

received by a spherical satellite. He found that the

• *. principal component of the reflected radiation on a

spherical satellite is in the radial direction and that this

component diminishes to approximately 10 percent of the

* -magnitude of the direct radiation at an altitude

approximately equal to the earth's radius. Components

other than in the radial direction generally may be

.neglected. Therefore, the configuration where the space

structure remains perpendicular to the radial vector

*rc, that is, 0 = w/2 (which gives the maximum radial

component) has been selected for the analysis. In

addition to the assumptions made before, it is assumed that

the reflectivities of the structure's surface for solar

radiation, both direct and reflected, and the earth's

* radiation are taken to be the same. In the real situation,

there arises a difference in the values of the

*-'. reflectivities because the earth radiates in a longer

wavelength region than that of the sun. As in the thermal

effect analysis, the solar radiation reflected by, and the

radiation emitted directly from, the earth and its

I's

4€.-22' " .2' € "2'._' ' ' ' - ' -. • "" '.. "'' ' ""' '. '"" .. "'
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atmosphere can be represented by reflection and emission

from a sphere of radius R.

In such a situation, the terrestrial radiation pressure

correspond to forces and moments on the space structure

which can be expressed as below (Figure 10):

1. For earth's albedo radiation, we can write the

following relations

(a) The total radiation force, using the inverse

square law is:

Falb = £ Palb(R/rc)2 AsdCOS( 10

with Cosa = 0 if Cos(3<0 (2.120)

where (a is the angle between the earth-sun line

and the earth-orbiting body line line (Figure 3a),

and Palb is the magnitude of the earth's

albedo radiation pressure at the surface of the

earth with (3 = 0 and 0 = w/2. According to

Flanagan and Modi [7739 Palb = 1.20658xi0-0 6

N/m 2 and from Equation (2.37c) with i' = w/2,

Cosa = Cose (2.121) 'S

S(b) The force in the radial direction (normal) is the

same as given by Equation (2.120):

• ,. U

4.I
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((r)alb = S Palb(R/rc)ZAsdCOS4

with Cosa3 = 0 when Cosa < 0 (2. 122)

(c) The moment about point 0 is (see Figure 10):

(Qe)alb = - 1 P(Qr)alb (2.123) 77

(d) The force along the structure is:

0(x)alb = 0, (2.124)

and

(e) The moment about point C (c. m. of the structure)

is (Figure 10):

(G0 )alb = -1 P(Qr)alb (2.125)

2. For direct earth radiation, we can write the
Ara

following:

(a) The total force, using the inverse square law,

is given by

Ede = Pde(R/rc)2 AsdiO (2.126)

where Pde is the magnitude of the direct earth

radiation pressure for the structure at the ",

earth's surface when 0 = n/2. According to Flanagan

and Modi 1773, Pde = 4.9795x10-7 N/m2

(b) The force in the radial direction is the same as

given by Equation (2.126)

(Qrlde = Pde(R/rc)zAsd (2.127)

(c) The moment about the point 0 (center of the earth)

is:

(01)de= -1 P(Dr)de (2.12) 

.
,Ss%. ..
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(d) The transverse force is:

(Qx)de = 0, (2.129)

and

(e) The moment due to the direct earth radiation

pressure about the point C (c. m. of the

structure) is ( Figure 10):

-O (Q0de = -IP(Or)de (2.130)

In all the above expressions Ip is given by Equation

(2.94).

C2 Total radiation_gresug_fgres__and momets. Total

forces and moments due to all three sources of radiation

are now obtained by summing up the individual

corresponding terms derived above. They are:

(a) The total radiation force in the radial direction:

P 0 r - (Or)ds + (0r)alb + (Or)de (2.131)

(Or)dsp (0r)albp and (Or)de are given by

Equations (2.111), (2.122), and (2.127), respectively.

(b) The total moment due to the radiation pressure about
* the center of the earth (0):

Q - (0e)ds + (Qe)alb + (Q0ede (2.132)

(0e)ds, (0elalb, and (Q0 de are given by

Equations (2.113), (2.123), and (2.128), respectively.

(c) The total r diation force along the longitudinal*..
.4

1.~ -
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direction of the structure:

Ox = (Oxlds + (Qx)alb + (Qxlde (2.133)

(OX)ds, IOx)alb, and lO(de are given by

Equations (2.118), (2.124), and (2.129), respectively.

(d) The total moment due to the radiation pressure about

the center of mass of the structure (C):

00 = (G0)ds + lQ0)alb + IQ0)de (2. 134)

(G0 )ds, IQ0)alb, and (Q0 lde are given by

Equations (2.119), (2.125), and (2.130), respectively.

The strain energy term (dU6 /dx) is as derived in the

differential gravitational force effect analysis and is

given by Equation (2.16). The equations of motion are now

given by Equations (2.14) with the above expressions

(Equations (2.131 through 2.134) for the radiation forces

and moments to be used as forcing functions.

A""

m'



C H A P T E R III

GENERAL APPROACH TO SOLUTION

The analyses reported here of the motion of a large

axially flexible dumbbell-shaped space structure executing a

A planar motion in a general orbit under various

external disturbances in space, including differential

gravitational forces, radiation thermal and radiation

pressure forces, has led the writer to the development of

four non-linear, coupled, differential equations of

4. motion and one equation which gives the temperature

variation of the structure in an orbit as a function of

time. An analytical solution of the equations is not

possible. The equations therefore are solved by a

numerical integration method. The purpose of this section

is to indicate the selection of a physical model and

essential system parameters and an outline of the

numerical method to obtain a solution of the complete

equations of motion.

One of the strong candidates for the preliminary

1-77
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design and deployment of a space structure is an open Of

truss-like configuration. We have therefore selected a

tetrahedral truss configuration (Figure 11) for the

numerical analysis. The space structure is a

dumbbell-shaped system. The mass of the truss may be

considered negligible compared to the total mass of the

system in the case of a relatively massive system.

Otherwise, the mass of the truss may be considered to be

lumped at the two ends of the structure. Although for a

refined design, thermal and dynamic analyses should be done

for every member of the truss structure, here we intend to

study only overall response of the structure. Therefore,

the truss-like structure linking the two masses ml and

m2 is viewed as a continuous plate-like model. The

equivalent dynamic mechanical and thermal properties

of the truss system C65, 663 are determined in

Appendix C and are tabulated in Table I along with other

general parameters.

To have a better understanding of the impact of

changing the values of the physical parameters on the

structure, the analysis is done with different values of

certain more relevant parameters such as mass and length. To

give a more practical significance of the result which will

be obtained from the present study, all the system

parameters are selected within today's practical range.

The tetrahedral truss-like space structure is
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Table 1. Constant Parameter values Used in Numerical Examples

(Refer Appendix C for detail.)

Solar and Terrestrial Constants

S= 8.64432x10- 1 6 km 4 /N-min 4 (6.670xI0 -8 dyne cm-/gm- )
g = 35.316 km/minz

,.. R = 6374.33 km
Ee = 437.0x10 6 watt/km2

Ar = 0.3

" Pde = 0.49795 N/km2

Palb = 1.20658 N/km2
Gs = 1.353x10 9 watt/km-
Pds = 4.66 N/km

2

Space Structure
9"

Material : Aluminum
Geometric Configuration : Tetrahedral truss
Cross-section : rectangular
Member size : 1.13 cm diameter bars
h = 4.899x10- 3 km
z s  0.05 xs km
Acs = (2.4495x10 4 ) x s km-
E = 6.689496x1010 N/km2
M = 6658.7678 (N-min 2 )/km (24 metric tons)

PAsd/Asf = 0.5
E= 24.34976x106 N/km2 - 0 k
a. 1.0 a. = 1.0 ar = 1.0 E = 1.0
T = 5.67x10-  watt/km2-Ok4

c = 52.75368 watt-km/N-min-Ok (879.228 joule/kg Oc)

Completely absorbing surface:Ca 1, Crs = Crd = Ct = 0

* "

:

*J

* q
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considered to be made of a number of identical aluminum bars

of approximately 1.13cm diameter. In a particular layer,

these bars are spaced 6m from each other. The height of the

truss structure is determined to be 4.899m (Appendix C).

The truss is assumed to be rectangular in cross-section.

The width of the truss is 0.05 times the length of the

structure. The total mass of the system is chosen to be

3600 metric tons at first and later 36 metric tons. The

formal value of m is selected to satisfy the equilibrium

state at t = 0 (Appendix D). This is a rather massive l

system. The later value of m is selected to be just 1.5

times that of the mass of the truss. The mass of the

truss structure alone is about 24 metric tons. The 1

static length of the structure selected varies from 0.5 km

to 5 km. An outline is presented in Appendix C to determine

the mass (M) and areas (Asd and Asf) of the truss

effective in receiving radiation flux.

In order to solve the four second order

differential equations of motion (2.14), we need to specify

eight initial conditions: rO, e0, xO, 0 0, rO,

e0, xO, and 00, where the subscript indicates the

values of a variable at the beginning of the motion of the

structure in an orbit at t =0. In addition to these eight

f- Al
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initial conditions, we require one more initial condition

To for thermal analysis in order to determine the

temperature variation of the structure in an orbit. Table

2 gives the values for these initial conditions used in the

analysis to investigate the effects on the space structure

due to the differential gravitational forces, radiation

.heating, and radiation pressure forces. Together with the

initial conditions, this table also lists the values used

for various system parameters which appear in the

equations; and some of which are changed occasionally to

study their effects on the structure.

In general, any set of values may be assigned to the

Ninitial conditions. However, to be able to judge the

validity of the results in practice and to draw a useful

conclusion from the results, it is necessary to limit

ourselves to certain more relevant sets of initial

conditions. Selection of each initial value is noted below:

hSelction of altitudes. Two values of rO are

selected 6574.33 km (altitude of 200 km from the surface

*-. of the earth) and 42274.33 km (altitude of 35900 km).

-a These altitudes represent low earth orbit (LEO) and

Geosynchronous orbit (GEO), respectively. It is

' very desirable to investigate the effects of the external

factors on the space structure at different altitudes.

01In particular, in studying radiation thermal and

pressure effects, we should have a knowledge of the

V.-
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relative magnitude of the effects due to direct solar,

direct earth and earth's albedo on the space structure as

a function of altitude. A space structure orbiting at

a higher altitude spends more time inside the earth's

shadow. Therefore, the effects of the earth's shadow can be

critical at higher altitudes.

Selection of orbits. Two type of orbits, one circular

and another elliptical, are selected for the analysis.

The value of e0 determines the amount of ellipticity

in the orbit. The greater the value of e0, the larger

* will be the ellipticity. In space, structures may be

deployed mainly in circular or elliptical orbits depending

on the functional requirements and purpose of the missions. U

In the present analysis, there are two good reasons

for selecting an elliptical orbit. One, contributions of

various sources can be compared at different altitudes in

the same orbit. This eliminates the need of considering many

circular orbits corresponding to different altitudes. Two,

the amount of time a space structure spends in the earth's

shadow is critical for radiation thermal and pressure

analyses. In an elliptical orbit with its major axis

along the earth-sun line, the structure spends more time in

the earth's shadow than in the circular orbit at the same

altitude.

Selection of initial lngtt. In the first set of

initial conditions, the value of the initial length x() and

U
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initial angular velocity (0 are determined from the

equilibrium state of the space structure in a circular orbit

(Appendix D) with r0 = 6574.33 km, e, = 0, 00 - 0,

r=x 0 
= 0 = 0 and xs = 1 km. In order to study

U

the effects of the initial axial deformation on the

response of the structure, other values of x0 selected

are 1.01xs, 1.05x s and 0.95xs .

SeJection of initial attitude angle. Three values of

00 are chosen - 0 radians, 0.1 radians (small initial

misalignment), or w/2 radians (large initial misalignment)

depending on the libration desired.

In iij!_c *~t~are~t L I_ j ,and body_

mter_ Since for all cases the structure is

considered to begin its motion at perigee, the value of

i0 is zero. The direction of perigee defines the

* xi-axis, and e is measured from this axis. Therefore ,

the value of e0 is also zero. Other initial conditions

x0 and 0 are set equal to zero for all cases.

SSna For thermal

analysis, the reference temperature Ts of the space

structure is taken to be room temperature (2900K). The

structure is assumed to have this temperature when in

the stress-free condition. Also, it is considered that the

space structure begins travelling in an orbit with this

temperature initially. Hence, we take a To  Ts  290 OK

for all cases.

*0-
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For radiation pressure effects, there is no need to

consider additional initial conditions.

S2Lacial Casesj(Qri entationj

In a general case, the effects of various external

factors can be seen in the space structure's orbit, attitude

motion and structural deformation simultaneously. Besides

the general case, it is of great importance to investigate

the effects of the external space disturbances on the

structure oriented in a specific direction. To facilitate

the purpose of various mission requirements, the space

vehicle may be operated in a particular orientation by means U
of control and guidance mechanisms. We study four different

orientations which are considered to be most significant in

the present context. These are given below: U

" aiauI_ ._±_._._ r_ l.- The normal to the space

structure is kept parallel to the earth-sun line for all

values of time, i.e., the space structure is always at a

right angle to the earth-sun vector (Figure 13(a)). In

such case, the space structure experiences the greatest

impact from direct solar radiation. From the functional

point of view, such a mission may be desirable to obtain

maximum solar power.

to at.Z_.I _ In this case, the normal

to the space structure is kept parallel to the

. . .. . . . . . . . . ..... . . . . . . . . .. . . .... . . . .. . .. - - .- - -
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earth-structure line for all values of time, i.e., the

space structure is at a right angle to the radial (rc )

vector (Figure 13(b)). In this orientation, the space

structure experiences maximum effects due to direct

earth emitted radiation and the earth's albedo. Such

orientation of a space vehicle may be desirable to obtain

the largest area of the structure exposed to the earth for

various functional requirements. .

SQsiaCaj2_j (0 = 02.. Here, the normal to the

structure is at a right angle to the earth-structure line at i

any instance, i.e., the structure is aligned along the

radial (rc) vector for all values of time (Figure i3(c)).

The space structure in an such orientation experiences the

least effects from the direct earth and the earth's albedo

radiation. Moreover, since the two point masses at the ends

of the structure are farthest apart with respect to the

earth, this orientation gives greatest response to the

differential gravitational forces. The structure may be

required to be in such an orientation for various purposes.

For example, once a rigid space structure of dumbbell shape

is so oriented in a circular orbit, it continues to remain

in this position [453 eliminating the need for any

additional control mechanism.

R3i~iSt_._ 4  _ _$_+ - In this case, the normal

to the structure is perpendicular to the earth-sun line

for all values of time, i.e., the structure is always

• cU

" i
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aligned with the direction of direct solar radiation

(Figure 13(d)). This orientation experiences minimum solar

radiation effects all along the orbit. Such an %

orientation must be attained for any space structure on

which the radiation thermal and pressure effects have to be

minimized.

NUMerical Method

The equations of motion developed in chapter II are

programmed using FORTRAN computer language for the Cyber

175 digital computer. The computer programs are written

using an IMSL subroutine DVERK to solve the equations of

motion. The method of integration used in the subroutine is

fifth and sixth order Runge-Kutta-Verner method. Throughout

the computer analysis the tolerance limit is maintained at

1.0xlO - 6 . The step size and the total duration of time

* chosen for the analysis vary depending on which kind of

external disturbances are applied to the structure. All

computations are done with single precision accuracy. A

brief outline follows:

A computer program is written to solve the equations of

motion (2.14) in conjunction with Equations (2.15) and

.,
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(2.16). A sample listing of the program (Computer Program

I), sample input data, a sample run session and sample

output data are shown in Appendix E. The step size for

integration is 0.2 minutes. The total duration of time is

400 minutes at lower perigee altitude (200 km) and 1500 or

1700 minutes depending on whether the orbit is

circular or elliptical at higher perigee altitude (35900

km). In order to study the effects of the differential

gravitational forces on the space structure, the ml/m 2
.4°.

ratio is varied keeping the total mass m constant. Other U

parameters which are varied and whose effects are studied

are total mass (m), lengh (xs), orbit eccentricity (e),

initial axial deformation (x0 - xs)s and initial

attitude misalignment (00). In addition to general

orientation of the space structure, all four special

orientations (cases) described in an earlier section are U

investigated. Table 2 (a) gives the summary of the

values of these parameters and initial conditions selected

for the computer investigations.

In order to study the combined effects of the

differential gravitational forces and radiation heat in

the space structure, the equation of motion (2.14) -
4%

in conjuction with Equations (2.42), (2.44), (2.52) and

SW-

-
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(2.26) are solved numerically. A listing of a sample

computer program (Computer Program I) written for this

* "purpose is given in Appendix E together with the listing

of sample input data, a sample run session and sample

output data. The step interval for all numerical integration

, is taken to be 0.2 minutes for :9: :i/2 whereas it is 0.1

' "minutes for :9: Z w/2. The latter interval includes the

earth's shadow region. The step size is decreased from 0.2

minutes to 0.1 minutes to determine the earth's shadow entry

and exit locations more accurately. The total duration of

time considered is more than enough for at least one orbit.

J For the circular orbit at altitude 200 km, this is 400

minutes (more than 4 orbit periods). For the elliptical

orbit, the duration is 437.2 minutes, and for circular

orbit at 35900 km altitude it is taken to be 1500 minutes.

To obtain the most severe thermal effects, the sun

direction is taken to be coincident with the xi-axis, and

*- the surface of the structure is taken as an ideal "black

body" for radiation heat. All the three major sources of

radiation heat - direct solar, earth's albedo, and

direct earth emission, are treated with equal

importance. Most of the effects are studied in a large

. eccentric elliptical orbit (e = 0.56, perigee at 200 km

altitude). However, to determine relative contributions

of these three radiation sources, numerical results are

obtained for circular orbits at two altitudes- 200 km and

.'... :............................... ................ . .......... .
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75900 km from the earth's surface. Thermal effects for

the general case and for the four special orientations

(cases) are studied. In addition, dependence of thermal

effects on the surface area to mass ratio (Asf/m) is

also studied for three values of the ratio. Table 2(b)

gives the summary of the values of these parameters and

initial conditions selected for the computer runs.

Egilibrium temperature. Maximum and minimum

equilibrium values of the temperature have been computed at

three altitudes-one, at 200 km; two, at 35900 km; and U

three, at 23483 km (apogee of the elliptical orbit with e =

0.56). A computer program (Computer Program III) which is

written for this purpose using Equations (2.40) is listed

in Appendix E along with sample input data, sample run

session, and sample output data.

DifferentialQE:ir tation and Radgiation Pressure Forces

The equations of motion (2.14) together with Equations
4..•

(2.131), which give radiation pressure forces and moments

and Equation (2.16) which gives strain energy are computer

programmed in order to determine the effects of the

differential gravitational and radiation pressure forces on

the space structure. The step size and total duration of

time considered for carrying out the integration are the

same as in the thermal analysis described in the sub-section

.. .,
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above for the elliptical orbit. A listing of a sample

Icomputer program (Computer Program IV), sample input

data, a sample run session, and sample output data are

presented in Appendix E.

As in the case of thermal effects, here too, the sun

lies in the orbit plane along the x I axis. The effects

of the radiation pressure forces are investigated in an

elliptical orbit of large eccentricity (e = 0.56, perigee

at 200 km altitude). The radiation pressure effects

greatly differ from one kind of structural surface to

another. In this study, the effects of radiation pressure

are determined for completely absorbing structural surface.

The general case and Special Case 1 (i.e, e + 0 = w/2)

are considered to study the contribution from direct

solar radiation. For earth's albedo and direct earth's

*radiation pressure effects, only Special Case 2 has been

considered. This orientation gives maximum effects due to

these sources. The impact of Asf/m is also studied for

three values of the ratio. Also, the effects of positive and

- .' negative values of the distance lp between the centre of

mass (C) and the center of radiation pressure (P) of the

structure are studied. The magnitude and sign of lp

.depend on the m1/m 2 ratio (see Equation (2.94)). The

largest value of this distance (1p) is expected to be

one-quarter of the total length of the structure. The

values of these parameters and initial conditions

r6

A0
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selected for the computer runs are summarized in Table 2(c).

The solution is obtained for duration of more than one orbit

period.

The points at which the space structure enters and

*" exits the earth's shadow has been determined by evaluating

the function

(rc - rsb)

systematically, for a set of closely spaced values of t.

Here, rc defines the orbit and rsb the shadow boundary.

The shadow entry or exit point lies in the interval at which

the function changes sign. These intervals can be

subdivided, and the procedure repeated to determined the

shadow boundary more precisely. Of course, no matter how

fine the step size (t), the shadow boundary can still

wholly lie between two successive trial values of t.

Therefore, to avoid unnecessary lengthy computation time, a

fairly reasonable step interval of 0.1 minutes is selected.

A glossary of terms used in the computer programs is

given in Appendix F.

"N
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CHAPTER I V

RESULTS AND DISCUSSION

The purpose of this chapter is to present the results

from the computer solution of the complete equations of

motion of an axially flexible dumbbell-shaped space

° .structure executing planar motion under the influence of

" various external dynamic and thermal causes, and to analyze

the results. The results, in general, are presented in the

form of self-explanatory plots. However, some of them are

presented in tabulated form. It has been attempted to

up support most of the results stated here by graphs and/or

data tables, but in some cases less important and more or

less obvious results are simply noted without any supporting

S- plots or data tables. The figures, tables and accompanying

discussion in this chapter give a quantitative as well as

qualitative description of the effects of various external

disturbances on a space structure.

-. The results are presented under three broad

categories: 1. Differential gravitational force effects, 2.

Combined thermal and differential gravitational force

effects, and 3. Combined radiation pressure and differential

j gravitational force effects. In all three categories the

results and discussion are presented so as to delineate the

,.
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effects of these factors on the axial deformation, attitude j

motion, and orbital motion of the space structure. The

various initial conditions chosen to exemplify the effects

of the above three major sources of external disturbances

found in space environments are given in Table 2(a), (b),

and (c), respectively. The orbit characteristics

(altitudes, types, and periods) of the orbits considered in

the present analysis are shown in Table 3.

L--L-
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Differential Gravitational ForceEffects

At a given altitude, the differential gravitational

force depends on the mass ratio (ml/m 2 ) of the dumbbells

and the length (x) and the libration (attitude) angle (0) of

the space structure (Equation 2.14). The variation of the

differential gravitational force ( Fg) along an orbit has

been obtained and its effects on the space structure's axial

deformation, attitude motion, and orbital motion have been

studied. Under the sole influence of the earth's

5.. gravitational attraction, we obtain results to see the

effects on the space structure's axial deformation and

motions due to change in the ml/m 2 ratio, static length

(xs), initial length (xO), initial libration angle

(00) and total mass (i) of the structure, as well as the

P. eccentricity and altitude of the orbit. The step size for

the computations is equal to 0.2 minutes for all the

computer runs reported below.

Initial conditions for this run are given under Example

No. 1 in Table 2(a). The principal purpose of the first run

is to verify the stability of the equations of motion and

the equibilibrium value of x used for xO. The initial

conditions for this run are selected by satisfying the

. .~ 4. P!
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steady state equilibrium configuration of the space F

structure (Appendix D). The orbit is circular at an

altitude of 200 km (Figure 14(a), and the structure is

released from perigee (i.e., e0 - 0, r0 = 0). The

initial misalignment is zero (i.e., 00 = 60 = 0). The

static length of the dumbbell structure is one kilometer.

The dumbbell mass ratio (ml/m2) is unity. Each dumbbell

mass is 1800 metric tons (5.0 x 105 N-min2/km). The

solution is run for about 4.5 orbits (t = 400 minutes in the

computation). The step size for the numerical integration

is 0.2 minutes. The orbit remains perfectly circular at the

altitude of 200 km for all time (Figure 14(a)). The period

of the orbit is found to be approximately 88.4 minutes

(Table 3).

For the perfect initial conditions selected, the

flexible dumbbell space structure stays aligned with the

local vertical (i.e., 0 - - ) and has no oscillation in

the axial length (i.e., x - xo, x - 0) (Figure 14(b). The

computer data, however, shows a slight oscillation in 0

which reached a maximum amplitude of approximately

0.155x10- 6 radians in the four and one-half orbit run. A

* plot of 0 versus time is shown in Figure 17(a) for one orbit

duration. Due to the round off and truncation error while

computing the initial value of x (x0 = 1.000023 km) by

satisfying the equilibrium state, the computer data also

show a slight oscillation in x. The amplitude of

-
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oscillation in x increases as time increases. The maximum

amplitude of fluctuation in x is never greater than 4.7 x

10- 4 percent of the initial x during the 4.5 orbit

duration. A plot of x versus time is shown in Figure 16(a)

for one orbit period. Figure 18(a) (x s = 1 km) shows that

the differential gravitational force (AFg) in the

structure also remains constant at a magnitude of

approximately 5.046 x 103 N. A slight oscillation in AFg

is observed which is mainly due to the slight oscillation in

x and 0. Except for these small librations, the nature of

the solution agrees with that given by Stocker and Vachino

for a rigid dumbbell C47] and by Hall and Smith for a

non-rigid dumbbell. U

Effects of Diffgrential Dumbbgl Masses (ml/m 2 Ratios)

A complete set of initial conditions for these runs is

presented in Example No. 2 through 4 in Table 2(a). Keeping

all the initial conditions as above, computer runs are made

for three additional values of ml/m 2 (1.5, 3.0 and

1/3). The total mass (m - mI + m2 ) of the structure is

kept constant at 3600 tons (i.e., 1.0 x 106 N-min2/km).

The values of m2 have been changed accordingly to obtain

the desired values of the ratio ml/m 2 . This insures S
that the total initial gravitational forces on the system

are the same for all values of ml/m 2 ratios. The step



size chosen for the computations is 0.2 minutes. The larger

the difference between the values of ml and m-,, the

higher is the value of differential gravitational force ( -

6Fg). Figure 15(a) clearly shows this result, where plots

of AFg/Fgo versus time are shown for four values of

mjl/m2 for approximately 4.5 orbits (t = 400 minutes)

duration. The AFg/Fg0 values remain constant over the

duration considered: at -0.152110xi0 - 3 for ml/m 2 =

1.0, at 0.19985397 for ml/m 2 = 1.5, at 0.4998859 for

ml/m 2 = 3.0, and at -0.50015156 for ml/m 2 = 1/3.

The magnitudes of AFg/Fgo are equal for ml/m 2 = 3

and 1/3 because one configuration can be obtained from the

other by replacing ml by m 2 and vice versa. The

computer data show that there is small fluctuation in
I-

AFg/Fgo values from the seventh place after the decimal

point. This is a very insignificant fluctuation and may

have occurred due to computer round off and truncation

error.

For ml/m 2 - 1.5, the orbit remains perfectly

circular at the initial altitude of 200 km (r0 = 6574.3300

km), and the orbital period remains unchanged at 88.4

minutes. On the other hand, a slight perturbation in the

orbit has been noticed for ml/m 2 = 3 and 1/3. The orbit

now becomes slightly eccentric with apogee point at a

distance 6574.3301 km from the center of the earth and with

perigee point at a distance 6574.3300 km from the center of

%
t-' A

9."

q~q r~ ,r '." '." "." .' ,'L ' ',' ., .[ ' , , ~. . - - # ." . • , . . ... • % •"1 ." % . ',' '.' .',-, , 9.



- -- - .w i.- -w . -- Tlv. .I*- - r j ..

1-106

S--LEGEND

~gO- 1 13 Nk
3

-. , -. . .......... ...... ..... ......... ...... ... .-4

I I I I I I I I I I .*1.

0 40.0 G00 '20.0 1000 200.0 240.0 2600 3200 3600 4000

t. (mrnutes)

Io I I I1 "'

1 2 3"

imber of Orbits
~(a)

.600 LEGEND......... .. .. .. . ... . .................. - , 00o
.460 - 300

.340 -:

.240

. "20

€~VS 
$ 

0 -
, 029 7. 5 N

-. 120

- .240

.. 360

-. 460 - - - - - - - - - - - - - - - - - -

I I I I I I I I I I .%
0 170.0 3400 5100 u00 100 10200 11900 13400 1300 1'000

t (minutes)

Nmber of Orbits

(b)

Figure 15. Dependency of differential gravitational force
(WF ) on dumbbell mass ratio m1 /m?: Circular
orgit at altitude (a) 200 k, 35900 km



. 1-107

the earth which is the initial value of rc. The orbit

period remains unaltered.

Increased oscillations in x have been noticed with

larger differences in the values of ml and m2 (Figure
VI I6(a)). However, the maximum magnitude of amplitude of the

oscillation is still very small, - only 0.00122 percent of

the initial length (xO) even for ml/m 2> = 3 and 1/3.

The general trend of the oscillation in x is to reduce the

length of the structure. The ratios ml/m2 = 3 and 1/3

follow the identical oscillation pattern in x. The period

of oscillation in x is approximately 3.4 minutes for both

values of ml/m 2 during the 400 minute run. For

ml/m 2 = 1.5p the maximum value of the amplitude of

oscillation in x is small, 0.0005 percent of xo, and the

period of oscillation is approximately 1.2 minutes.

PSimilarly, there is an increased effect of differential

mass of the dumbbell structure in the attitude motion (0).

Again, the larger the difference between the values of ml

and m 2 , the greater is the libration in 0. Figure 17(a)

shows a plot of 0 versus t for ml/m 2 = 1, 1.5, 3.0, and

1/3 during a 100 minute duration. The ratios ml/m 2 = 3

and 1/3 have identical effects on 0 also. The maximum

values of amplitude of libration in 0 are approximately 0.66

x 10- 5 radians for ml/m 2 = 3 and 1/3, and 0.995 x

10-6 radians for ml/m 2 = 1.5 during the 400 minute

* run. The period of libration in 0 is the same for all
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m1 /m2 values which is approximately 51.11 minutes. The

amplitude of oscillation in x and 0 remains constant
4..%

throughout the duration considered.

From these results, we can conclude that the

differential gravitational forces as induced by the change

in the value of the ml/m2 ratio do produce some

oscillations in x and 0, the exact magnitudes of which are

very small. An accurate determination of such a small

oscillations has been difficult mainly due to the presence

of other small amplitude oscillation caused by the

truncation and rounding off of the initial value of > while

computing it from the equilibrium state.

Effects of Length

.5--

Example No. 5 through 7 in Table 2(a) correspond to the

initial conditions of these runs. Here, computer runs are

obtained for three additional values of the static length

(xs ) equal to 3 km, 5 km, and 0.5 km of the dumbbell space

structure. The initial value (xO ) of x has been

accordingly changed to 3.000069 km, 5.000115 km, and

0.5000115 km, respectively, to make sure that the

equilibrium configuration will be maintained and that only

the effects of changing the values of x. could be
I

observed. As before all runs are made for approximately a

4.5 orbit duration (t = 400 minutes with step size for the

U

-..... . . . ....4 . -...... . ... •....-....-.....-............................-......... .. ...-.-. ? -:
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computations equal to 0.2 minutes). Figure 18(a) shows a

plot of &Fg/F. 0 versus time for xs = 1 km, 3 km, 5

ykm, and 0.5 km. The plot shows that the values of the

differential gravitational force increase with increasing

XIS. The magnitude of 6Fg/Fgo remains constant

throughout the duration of 400 minutes at -0.15211 x 10- 3

for xs = 1 km, at -0.45633 x 10- 3 for xs = 3.0, at

-0.76055 x 10- 3 for xs = 5 km, and at 0.76055 x 10- 4

for x. = 0.5 km. The computer data show a slight

oscillation in these values from the fifth place after the

decimal point (i. e., from the seventh significant figure

after the decimal point). This is mainly due to the

* oscillations in x and 0 and a slight perturbation of the

orbit. B. comparing these values of Fg with those

obtained while studying the effects of the ratio ml/m2,

we can say that the dependency of the differential

gravitational force on xs is thus not as strong as that on

the ml/m 2 ratio.

Increased perturbation of the orbit is noticed with the

increasing difference in values between the equilibrium xs

(equal to I km) and xs selected arbitrarily (3 km, 5 km,

and o.5 km). For xs = 0.5 km. the orbit apogee point is

seen to be located at rc = 6574.3302 km and e = w whereas

the perigee remains at the initial value of rc (r0 =

6574.33,00 km) and e = 0 or 2w. On the other hand, for both

xs =3 km and 5 km, the point r0 =6574.3300 km and
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90 = 0 selected initially becomes the apogee point.

Perigee points are at rc = 6574.3282 km and 9 = w for xs

=3 km, and atrc = 6574.3245 km ande = wfor- = 5

km.

The effect of xs on the axial length (x) of the space

structure is very insignificant. The oscillations in x are

similar for all xs values with the only difference being

that the amplitude of oscillation increases with time in a

different proportion from one xs value to the other.

Figure 19(a) shows a plot of x/x s versus time for xs = 1

km, 5 km and 0.5 km. For all xs values, the amplitudes of

oscillation in x start with zero value at t = 0 and keep

S increasing as time increases, and the difference in the

amplitude values of the oscillation corresponding to various

xs become more and more distinct. In any case, the

*. maximum amplitudes among all cases occur for xs = 5 km
....

which is no more than 0.00009 percent of the initial

length. The period of oscillation in x is 1.0 minutes for

all cases. The time step considered for the numerical

computations is 0.2 minutes. The effects of xs are also

negligible on attitude motion (0) of the space structure.

As can be seen in Figure 20(a), the oscillations in 0 for

Vs = 0.5 km is the same as that for xs = 1 km

(equilibrium state), of which the maximum amplitude and

period of oscillation are approximately 0.156 x 10-6

"radians and 50.3 minutes, respectively. These values remainrain n 03mnts
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approximately constant throughout the duration considered.

For x = 5 km, the amplitude of oscillation in 0 is

approximately constant at 0.53 x 10- 6 radians, but the

period of libration is not constant. For the first

oscillation the period is 85.2 minutes. For the second,

third and fourth oscillations, they are respectively 92.2

minutes, 91.6 minutes and 82.2 minutes.

Effects ofInitialAttit~q2

The additional values of the initial attitude (00)

selected are 0.1 radians and 1.5707963 (equal to w/2)

radians. Example No. 8 and 9 in Table 2(a) show the

complete initial conditions for these runs. Figure 21(a)

shows a plot of AFg/Fg 0 versus time for 00 = 0

radians, 0.1 radians, and 1.5707963 radians for a duration

of 400 minutes. The step size chosen for numerical

integration is again 0.2 minutes. The differential

gravitational force (expressed as AFg/FgO) oscillates

between an amplitude of approximately -0.13135x10- 3 and

-0.15211x10- 3 for 00 = 0.1 radians and between

approximately 0 and 0.15211 x 10- 3 for 00 = 1.5707963

radians. As mentioned earlier, &Fg/FgO remains

constant at -0.15211 x 10-3 for 0 = 0 radians at all

time. It should be noted that for the larger value of 00

(equal to 1.5707963 radians), the amplitude of oscillation

U]
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in 6Fg/FgO occurs as spikes near the perigee points.

The period of oscillation in A Fg/Fg0 is approximately

25.5 minutes for 00 = 0.1 radians and 157.2 minutes for

00 = 1.5707963 radians. -

As far as the perturbation of orbit is concerned the

small value of 00 (equal to 0.1 radians) does not perturb

the orbit at all. However, the larger value of 0 equal

to w/2 radians perturbs the orbit. In this latter case the

largest variation in the value of rc in one orbit is seen

to be from 6574.3299 km to 6574.3305 km during the 400

minutes run. The orbital period can be taken to be the same

as earlier (88.4 minutes). Thus, the perturbation of orbit

due to 00 is still very insignificant.

Figure 22(a) shows the plot of x/xs versus time for

0 o = 0, 0.1 and w/2 radians. The oscillation in x for

00 = 0.1 radians is seen to be sinusoidal about the

initial value of x (xO = 1.000023 kin). The maximum value

of amplitude of oscillation in x is only 0.0004 percent of

the initial length (xO). For 00 = w/2 radians except in

the vicinity of t - 96.2 minutes where the peak value (equal

* to 1.0000953 km) occurs, x/x s oscillates about the static P

length (s = I km) with amplitudes between 1.000023 km and

0.999977 km. It is noteworthy that the value of x goes

below the static length (xs ) for the first time. The

maximum value of amplitude of oscillation is still very

small, only approximately 0.00072 percent of the initial

[]
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length. The period of vibration in x is approximately 1.1

minutes. The step size used for the computations is 0.2

minutes. The plots in Figure 22(a) are shown for only 100

minutes whereas the computer data are obtained for 400

minute duration. The trend of oscillation in x remains the

same as shown in the plot for duration after 100 minutes,

too.

The initial libration angle (00) has very significant

effects on the attitude motion (0) of the space structure.

When 00 = 0.1 radians, 0 oscillates about the rc vector

(local vertical) sinusoidally with a constant period and

with a constant amplitude equal to its initial amplitude

(Figure 23(a) and (c)). The angular rates (b) of the

dumbbell vary from zero to nearly 0.205 x 10- 3 radians per

second. The orbital period for this run is 88.4 minutes,

and the period of libration is 51.2 minutes, the ratio of

these periods being 1.7266 (approximately 43). The small

difference between this value and the value of 43 (1.73205)

is mainly due to the approximation made in intrapolation to

obtain the orbital period and libration period from the

computer run. It can therefore be concluded that the ratio

of orbital to libration period is indeed 43 as predicted by

Klemperer and Baker for a rigid dumbbell [453, and by Hall

and Smith for an axially flexible dumbbell [793. For a

larger initial libration angle (00) equal to w/2, the

variation of 0 with time is seen to have nearly a

U.
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rectangular distribution (Figure 23 (a)). Figure 23(a)

shows that 0 for the structure now essentially remains

constant at either of two values, one at the minimum value

of approximately w/2 radians, and the other at the maximum

value of approximately 3w/2. The transition from one

position to the other takes place in a relatively short

period of time (approximately 40 minutes) compared to the

total period of libration in 0 (approximately 260 minutes).

This total period of libration in 0 is greater than twice

the orbital period. The dumbbell is thus found to be

oscillating very slowly about the rc-vector in the 0 =w

position.

Effects of Initial Axial Deformation

The simultaneous equations of motion are solved for

three additional initial values of x (xo/x s = 1.01,

1.05, and 0.975). Example No. 10 through 12 in Table 2(a)

give the complete initial conditions for these runs. The

computer runs are made for approximately 4.5 orbits (400

minutes) with step size for numerical integration equal to

0.2 minutes. Figure 24(a) shows a plot of AFg/Fg0:9 go
versus time for xO/x s equal to 1.000023 (equilibrium

value), 1.01, and 1.05 the during first 100 minute period.

The same oscillation pattern continues for the rest of the

run. This plot shows that AFg oscillates about its

AN . .
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equilibrium value equal to (when x)/x, = 1.000023) as a

larger initial axial deformation is introduced. The larger

the initial axial deformation, the larger becomes the

amplitude of oscillation of A Fg/FgO. The oscillation

in A Fg/FgO is of approximately constant amplitude of

* magnitude 0.0015 x 10- 3 for xO/xs = 1.01, and 0.00789

10 -3 for xO/xs = 1.05 relative to the equilibrium

,. value. The periods of oscillation are approximately 1.1

minutes for all values of xO/xs. For xO/xs = 0.975

(which is below the equilibrium value), the oscillation

* pattern is similar to when xO/Xs is above the

equilibrium values (xo/xs = 1.01 and 1.05), but these

two oscillations are out of phase.

The computer results show that the orbit remains

unperturbed in all respects for all values of initial axial

*. deformation (xO-xs ) of the structure. The orbit is

circular at 200 km altitude and has a period approximately

88.4 minutes.

..- The contributions of x0 are quite significant in
* 45

perturbing the axial length (N) of the space structure.

Figures 25(a), 25(b), and 26(a) show the plots of x/x s

versus time for xO/xs = 1.01, 0.975, and 1.05,

respectively. All of these figures also contain a plot of

xx/s versus time for xo/xs = 1.000023 representing the

equilibrium (steady state) configuration. These plots show

that x oscillates sinusoidally with a constant period of 1.1

M12
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minutes and with a constant amplitude of initial deformation

(,,O-xs). The rate of deformation (U) of the axial

length (x) of the dumbbell varies from zero to 1.28, 0.256,

and 0.66 kilometer per minutes for xO/xs equal to 1.05,

1.01 and 0.975 respectively.

Figure 27(a) shows the plot of 0 versus time for

'<(/',s = 1.00023, 1.01, 1.05, and 0.975. That figure

shows that the larger initial deformation produces a larger

magnitude of oscillation in 0. The dumbbell oscillates

sinusoidally about the radial vector (local vertical). The

periods of oscillation in 0 are the same for all values of

xO/xs, approximately 51.0 minutes. The amplitudes of

oscillation are constant at values of approximately 0.0)616

radians for xO/xs = 1.05, at 0.0117 radians for

•,O/s = 1.01, and at 0.028 radians for xO/x s =

0.975. The angular rates (0) of the dumbbell about the

local vertical vary from zero to nearly 0.015, 0.0028, and

0.0066 radians per minute for xO/xs - 1.05, 1.01 and

0.975, respectively.

In addition to the circular orbit, two more elliptical

orbits are now considered to study the effects of orbit

eccentricity. In the first case, 40 is slightly increased -,

~i<~::?**J *-* ~. ~ _..V 2. .~% ~ -,.~-> K ~-*-- -
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to a value of 0.07O8 radians per minute to obtain an U

elliptical orbit with small eccentricity (e z 0.0785). The

period of such orbit is approximately 100 minutes (Table

Z). The distance from the center of the earth to the apogee

of the orbit is approximately 7694.6759 km, and to perigee

is 6574.3r00 km, which is the initial value of rc. In the

second case, to obtain a fairly large eccentric orbit

(e z 0.56), the value of 40 is further increased to

0.08883 radians per minute. The period of the orbit is

approximately 305.6 minutes (Table 3). The perigee of the

orbit is at rc = 6574.33 kin, and apogee is at rc =

23,483.013 km. The complete set of initial conditions for

these runs is indicated by Example No. 14 and 15 in Table

2(a). Figures 28(a), 28(b), and 30(a) show the plots of

rc/rO, e, and 6 versus time, respectively for these

elliptical orbits along with the ideal circular orbit at

rc - 6574.33 km (200 km altitude). The solution of the

complete equations of motion is obtained for 400 minutes.

The step size chosen for the computations is 0.2 minutes.

By increasing the eccentricity (e) of an orbit, we are

increasing the value of rc. The differential gravitational

force (AFg) therefore will be reduced with an increase in

e. Figure 31(a) shows a plot of AFg/FgO versus time

during the 400 minute journey of the space structure into

orbit. The magnitude of 4 Fg/FgO is minimum at the

apogee point for both elliptical orbits as the value of rc

| 6.

:E
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is maximum at this point. For the larger eccentric orbit (e .

0.56), AFg/Fgo is nearly zero around the orbit except
4.O

near the perigee points. For the smaller eccentric orbit (e

= 0.0785). the magnitude of A Fg/Fgo is 0.9782x10 - 4 at rw

apogee. The value of A Fg/Fgo equal to 0.15211<10-

at the perigee points is the same as that for an ideal

circular orbit at 200 km altitude.

Figure 32(a) shows the plot of x/x s versus time for

both the elliptical orbits and the ideal circular orbit.

The effects of the orbit eccentricity are quite apparent

from the figure in which two different types of oscillation

in x/x s can be seen. One is the fine, closely spaced,

small amplitude oscillation in x, which is due to the fact

that the value of x0 (equal to 1.000023 km) used in the

computations is not the exact value of x0 which satisfies

the equilibrium steady state but an approximation within the

rounding off and truncation of numbers after sixth

significant figure after the decimal point. In subsequent

time, this error produces some oscillation in 0. This

oscillation in 0, in turn, causes larger amplitude of

A oscillation in x/x s . Such small oscillation in x/x s

exits in alleven in zero eccentric orbit (circular orbit)

(Figure 32(a)). The period of such oscillation in x/x s is

about 1.1 minutes. For circular and near circular (small

eccentric) orbits, the amplitudes of the oscillation

increase with time. However, for a large eccentricity orbit

I

[ %'.°'.'...'- -a° .° .& -4. . .a -p . ... .. '. ° .. %. '.' . ' .' . .. ' - % % '
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(e = 0.56), the maximum amplitudes of vibration remain

almost constant with time. The increase in orbit

eccentricity increases the amplitudes of such oscillation in

X/X., but it does not affect the period of oscillation.

The second kind of oscillation in x/xs, which has larger

amplitude and longer period of oscillation, is mainly due to

the orbit eccentricity. For small eccentricity (e =

0.0785), x/x s oscillates between approximately 1.000028

and 1.000010 with period approximately 100 minutes. For the

larger eccentricity (e = 0.56), the structural length

decreases quickly to its static length (x, = 1.0 km) and

remains at this value until it approaches the next perigee

point in the orbit at which the structural length increases

quickly to exceed its initial value. The period of this

kind of oscillation in x is more than the orbital period

(305.6 minutes). The maximum change in length of the

structure in any case is still not significant being only

0.0028 percent of the initial x.

More significant is the effect of the orbit

eccentricity (e) on the attitude motion (0) of the space

structure. Increasing the eccentricity means introducing-

larger libration in 0. Figure 33(a) shows a plot of 0

versus time for the circular orbit (e = 0), and the

* elliptical orbits with e = 0.0785 and e = 0.56. Figure

.73(c) shows the same plot in enlarged scale for 0.

Eccentricity of an orbit causes the same kind of effects on
""U'

-* . -- * -- *i
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0 as does increasing the initial libration angle (00).

For the slightly eccentric orbit, 0 oscillates about the

local vertical. The amplitudes and period of oscillation in

0 do not remain constant however. For example, in the first

orbit, the dumbbell oscillates between 0 equal to

approximately 0.09760 radians and -0.12051 radians with

period equal to 94.4 minutes; whereas in the third orbit, it

oscillates between 0 equal to approximately 0.1082 radians

and -0.05674 radians with period equal to 105.4 minutes.

For the large eccentricity orbit (e = 0.56), the dumbbell

keeps rotating about its center of mass continuously up to

the maximum value of 0 equal to 7.9889 radians at time, t =

M 282.4 minutes. After reaching this value, 0 is seen to

decrease (Figure 33(a)). The dumbbell may therefore tumble

continuously if the orbit eccentricity is increased above

some critical value.

Effects of Altitudes

To this point the analysis has been carried out in a

low earth orbit (LEO) at an altitude of 200 km from the

surface of the earth (rO=6574.33km). To study the effects

of the altitudes on the space structure's motion and

deformation, the solution of the equations of motion has

been obtained by deploying the structure in the

geosynchronous orbit (GED) at an altitude of 35900 km from

,L . -, , < '.'.'.. .... ~.q . , .- ,.. .'. .. . . .-- 4 -... - " •Q .. . ... - '.-. .* - . . '. ' , 4. "
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the surface of the earth (i. e., r0 = 42274.33 km) for

various initial conditions and values of the physical

parameters as was done for the LEO. The initial value

( 0 ) of e is accordingly changed to 0.00435818 radians per

minute to obtain a circular orbit at the higher altitude of

r0 = 42274.33 km. For the first computer run at this

higher altitude (GEO) all other initial conditions and the

values of the physical parameters (Example No. 16, Table

2(a)) remain the same as in LEO (Example No. 1, Table

2(a)). The solution is obtained for 1500 minutes with time

step for computations equal to 0.2 minutes. The orbit

remains perfectly circular at the altitude of 35900 km with

orbital period approximately 1441.7 minutes (Table 3).

Since the gravitational force is inversely proportional

to the square of the distance of the space structure from

the center of the earth, the total gravitational force

(Fgo) on the structure is far less at this altitude than

that in LEO. The value of Fgo is 8.029475x10 5 N in GEO,

whereas it is 3.319996x10 7 N in LEO, the ratio of these

values being equal to the ratio rc 2 (LEO)/rc2 (GEO) as

expected. The value of the differential gravitational force

(AFg) is accordingly much smaller in GEG, and is

approximately 19 N9 whereas it is 5.046x10 3 N in LEO.

However, the magnitude of AFg/Fgo remains constant along

the orbit as in LEO (Figure 15(b), ml/m 2 = 1.0).

The value of x0 (1.000023 km) is not an equilibrium

| U
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value for this altitude. Hence, the axial length of the

structure now oscillates about its static length (xs = 1

km) with constant amplitude equal to the initial deformation

(0.000023 km) and with period equal to 1.1 minutes (Figure

16(b), m I/m 2 = 1.0). Since any change in altitude

disturbs the equilibrium configuration and gives rise to

different values of 4Fg and different variations in x, it
*0,

is obvious that due to these changes the attitude motion (0)

will be affected. Figure 17(b) shows a plot for 0 versus

time for ml/m2 - 1.0. The dumbbell oscillation about

its local vertical is very distinct now. This same plot

gives a nearly horizontal straight line distribution in the

A case of the orbit at the lower altitude. The amplitude of

oscillation in 0 is approximately 0.265x10- 4 radians, and

the period of oscillation is about 832.3 minutes. The

Plarger amplitude of oscillation in 0 of the dumbbell may

have been caused also because of the weaker restoring torque

developed owing to the smaller gravitational pull at the

higher altitude. The ratio of orbital period and liberation

period is 1.7322 which is again approximately equal to 43.

At the altitude of

GED, the ratio xs/r 0 is very small. (For xs = 5 km,

×s/tO = 0.118xl- 3 ). This may be the main reason that

the effects of differential masses (the ml/m 2 ratio) and

the length (xs ) have no noticeable influence on 0 and x

of the space structure. The complete initial conditions are

?a
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given under Example No. 16 through 19 in Table 2(a).

Figures 15(b), 16(b), and 17(b) show respectively the plots

of AFg/Fgo, x/xs, and 0 versus time for ml/m2 = 1,

3, and 1/3. Figures 18(b), 19(b), and 20(b) show

respectively the plots of AFg/Fgo, x/xs, and 0 versus

time for xs = 1.0km and 5.0km. The differential

gravitational force Fg increases with increase in the

( m 1 -m 2 ) value. However, the distribution of AFg

again remains constant throughout the one orbit run for all

ml/m 2 ratios. Dependency of4 Fg on xs can be seen

in Figure 18(b). A comparison of the plots in Figures 15(b)

and 18(b) shows that the dependency of AFg on xs is not

as sigificant as in the case of the ml/m 2 values.

The length (x) of the space structure oscillates about

its static length (xs) for all ml/m 2 ratios and xs

values with maximum amplitudes approximately equal to the p

initial axial deformation, that is, the (xO-xs) value

(Figures 16(b) and 19(b)). However, in the case of the "

effects of xs, the period of oscillation in x is about 1.1

minutes, which is the same as in the first run at this

altitude where xs - 1.0 km and ml/m 2 - 1.0, whereas

the period of oscillation in x is approximately equal to 3.4

minutes for each of the other values of the ratio ml/m 2

(3 and 1/3). As far as the effects of the ml/m 2 ratio

and of xs on 0 are concerned, the effects are almost zero.

In all cases, the amplitudes and period of oscillation in 0

-* U
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Uremain the same as mentioned for the first run (Example No.

16, Table 2(a)) above in GEO. For all these situations, the

orbit remains completely circular at 35900 km altitude with

the same orbital period of approximately equal to 1441.7

minutes.
d

Influence of initial attitude motion. As in LEO the

computer results are obtained for two more values of 00

(0.1 and w/2 radians). Example No. 20 and 21 in Table 2(a)

give the initial conditions used in these runs. The

variation of AFg/Fgo with time in GED is similar to LEO

(Figure 21 (b)). Here also, when 00 = 0.1 radians,

,Fg/Fgo oscillates about the AFg/Fgo value of

-0.23656x10- 4 corresponding to 00 = 0 radians. The

amplitude of the oscillation lies between the two maximum

values of approximately -O. 2354x 10- 4 and -0.23656x10- 4 .

The period of oscillation is approximately 426.3 minutes.

As in LEO for 00 = w/2 (Figure 21(b)), Fg/Fg0

remains almost constant for approximately the first 1106.0

minutes, the change in dFg/Fgo in this period being from

0 to 0.9369x10 6 . The increase in AFg/Fg0 is more

rapid toward the end of one orbit period and reaches a

maximum value of approximately 0.1994x10- 4 at t = 1500

-'.minutes. As far as the perturbation of orbital motion due to

00 is concerned, the orbit is circular throughout the

duration considered at the altitude of 35900km and with

orbit time the same as before (1441.7 minutes), whereas in
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LEO, a slight perturbutaion in orbital radius (rc) when

00 = n/2 radians has been noticed.

Exactly as in the case of the LEO, for small values of

00 (0.1 radians), the dumbbell oscillates here too about

the local vertical sinusoidally with a constant period and

with a constant amplitude equal to its initial value (0.))

(Figures 23(b) and (d)). The period of libration is 834.4

minutes, the ratio of orbital to libration periods being

1.72783 which is approximately equal to 43. This result

agrees with the prediction ot Klemperer and Baker [453 for

the rigid dumbbell, and of Hall and Smith [793 for an .'

axially flexible dumbbell. For large value of 00

(1.5707963 radians which is equal to w/2 radians), the

attitude angle 0 keeps on increasing very slowly for most of

the time in one orbit (for example, from 1.5707963 radians

at t = 0 minutes to 1.6325 radians at t = 1190 minutes).

Toward the end of the first orbit, the increase in 0 becomes

more rapid. During the duration of the 1500 minutes run,

the maximum value of 0 is equal to about 2.573272 radians at

t = 1500 minutes. The minimum value of 0 is equal to 00.

Figure 22(b) shows a plot of x/x s versus time for the

three different values of 00 (0, 0.1, and 1.5707963

radians) during the first 100 minutes. Exactly the same
.4o

trend of oscillation in x/x s has been observed throughout

the duration of 1500 minutes considered for the computer

solution. It is clearly seen that there is no effect of

e .

4
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00 on in GEO. The computer results show some

differences in the .. values from the sixth place (or sixth

significant figure) after the decimal for these 0(). For

all values of 00, the dumbbell length (x) oscillates about

*::, the static length (S) with almost constant value of

amplitude equal to the initial axial deformation (xO-.xs )

and with constant period of oscillation equal to

approximately 1.1 minutes. Although the amplitude of

oscillation is still very small (only 0.0023 percent of

Xs), the trends of oscillation in x when 0 equal to 0 and

0.01 radians clearly differ from those obtained for LEO (see

Figures 22(a) and 22(b)).

gInfluence of initial axial deformation. The effects of

the initial axial deformation are studied by obtaining

* computer results for one more value of x0 equal to

*1.05x s (Example No. 22, Table 2(a)). Here again, the

effects of x0 are similar to those obtained for LEO. The

S.value of the differential gravitational force (4Fg/Fgo)

for x0 /xs equal to 1.05 fluctuates between the peak

values approximately equal to -0.2484xi0 - 4 and

-0.225x10- 4 with period equal to about 1.1 minutes.

Figure 24(b) shows a plot of dFg/Fgo versus time for the

first 100 minutes of the 1500 minute duration. The

variation of AFg/Fgo continues in the same fashion

throughout the total duration. For xo/x s = 1.000023,

- " 4 Fg/Fg 0 remains almost constant at approximately

.. J .%
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-0. 2365x -4.

As in LEO, the dumbbell length Cx) oscillates about its

static length (xs ) with almost a constant amplitude of

initial axial deformation and with a constant period equal

to approximately 1.1 minutes. Figure 26(b) shows a

representative plot of x/x s versus time for xo/x s =

1.000023 and also for 1.05 during the first 100 minutes of

the one orbit period. The initial axial displacement causes

the structure to oscillate about the local vertical (rc

vector) with a constant amplitude. Figure 27(b) shows.a

plot of 0 versus time. For xo/xs = 1.05, the maximum

amplitude of oscillation in 0 is equal to approximately

0.06148 radians, and the period of oscillation in 0 is about

631.1 minutes. It has been seen from the computer data that

the orbit remains completely unperturbed in all respects.

Influencegf orbit ecentEricity. Only an orbit with

small eccentricity is selected here. An orbit with large

eccentricity (e = w/2 radians) is not considered at this

higher perigee altitude of 35900 km. This is mainly because

such an orbit gives altitudes much higher than contemporary

concern and also because the computer time required for the

numerical solution is large, (of the order of a few hours).

The value of 40 is increased from 0.00435818 radians per

minute to 0.004526 radians per minute to obtain an orbit of

eccentricity (e) equal to approximately 0.0785 (the same as

in the case of LEO). The initial conditions used here are! ,
.C *.... J .. , %. . ~ S ,'' . A '. ~ ;
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given under Example No. 24 in Table 2(a). The period of

orbit is approximately 1629.8 minutes and the apogee of the

orbit is at a distance of approximately 49476.436km from the

center of the earth (i. e., at an altitude of 43102.1 km

from the surface of the earth), and the perigee is at a

distance of 42274.33 km from the center of the earth (i. e.,

at an altitude of 35900 km from the surface of the earth)

(Table 3). Plots of rc/rO, 9, and e versus time are

shown respectively in Figures 29(a), 29(b), and 30(b).

The variations of the differential gravitational force

along the circular and elliptical orbits are given in Figure

31(b). For the elliptical orbit, the value of AFg/Fgo

decreases from 0.23656x10- 4 at perigee to 0.147482x10- 4

at apogee and increases back to 0.23656x10- 4 at perigee

again. No effect has been observed on the axial length (x)

of the structure due to the orbit eccentricity (Figure

32(b)). The oscillations in x are the same for the circular

*" and the slightly eccentric orbit. As in LEO, the orbit

eccentricity makes the dumbbell structure oscillate about

its local vertical with amplitudes of 0 between peak values

of approximately 0.097549 radians and -0.12044 radians and

* with libration period equal to about 1539.9 minutes for the

" S 2000 minute duration run. The amplitudes and period of

oscillation in 0 are thus increased with increasing orbit

eccentricity.

, " Zj.,"W"",'' ' "".r ,' .;- 2 .'.'°.' .';" "'.' .' 2'J '.' J.' -'." '2..w''.' .r . . '.-2.'".'
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Effects of Attractive Forces Between the Dumbbell Masses

The general equations of motion of the space structure

include the attractive forces between the two end dumbbell

masses, ml and m2. Although this attractive force may

be negligible in comparision with the gravitational pull at

lower altitudes, it may be quite significant at higher

altitudes where the gravitational attractive force is

relatively small. To obtain a satisfactory answer to this

question, the solution to the complete equations of motion

is obtained by neglecting the attractive force term

(Gmlm2 /x
2 ) between the masses ml and m 2 in

Equation 2.14(c). The solution is obtained for circular

orbits at 200 km and 35900 km altitudes separately. The

complete initial conditions for these runs are given in

Example No. 13 and 23 in Table 2(a). The results thus

obtained are compared with the respective results obtained

earlier (Example No. 1, and 18, Table 2(a)) for the same

initial conditions and physical parameter values with the

attractive force term included in the equations of

motion.The step size used for the computations is 0.2

minutes.

The computer data show that, for both the altitudes,

the orbit and the length (x) of the structure remain

completely unaffected. The values of rc, rcq E A, ,

r
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and remain identical Lip to eighth place after the

decimal. (The data read out is to 8 places after the

decimal). Similarly., AFg/FgO remained exactly the

OR same. A slight difference in read out occurs for 0 from the

fifth place after the decimal at the 200 km altitude orbit

and from the seventh place after the decimal at the 75900 km

altitude orbit. However, the maximum values of 0 are very

small, of the order of 10- 7 radians at 200 km altitude and

of the order of 10- 5 radians at 35900 km altitude. We can

therefore conclude that the attraction between the two

dumbbell masses has no effect on the orbital motion,

attitude motion, or the axial deformation of the space

structure.

N

Effects on Controlled Orientations

U

The truss-like space structure is now required to have

a certain fixed orientation with respect to the sun or the

earth at all time in the orbital journey. The orbit

selected here is the elliptical one with large eccentricity

(e = 0.56). Figures 28(a), (b), and 30(a) show the plots of

rc, e and 4 versus time, respectively for such elliptical

orbit when the structure takes a general orientation

(Example No. 15, Table 2(a)). The term general orientation

(case) means that the structure is free to take any

orientation (i.e., any value of 0) during its travel in the

P"
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orbit. For such a case, the first perigee is at r s
6574.3300 km, and the second perigee occurs at rc =

6574.3309 km at t = 305.6 minutes. The apogee of the orbit

is at rc = 23483.013 km at t = 152.8 minutes. These

values are noted here once again to compare with the

corresponding results obtained in the various special cases

(orientations). Four special orientations (as defined in

Chapter III) of the structure are considered, and results

are obtained for each of them for a time of 400 minutes with "

the 0.2 minute step size for the computations. The initial

conditions and physical parameter values associated with

these runs are given by Example No. 25 through 28 in Table

2(a). These controlled orientations of the space structure

may not be of any significance as far as the effects of

differential gravitational force are concerned, but they are

of greater importance while studying thermal and radiation.1
pressure effects on the space structure. Results obtained

* for each special case are presented below in comparison with

those obtained for the general case.

aCasg!_ 1 _I (e + 0 = n/2). Figures 42 shows a plot

of e and 0 versus time for Special Case 1 during a period of -

400 minutes. There is a very insignificant effect on the

apogee and perigee heights of the orbit. Apogee is at rc

= 23483.014 km at t = 152.8 minutes, and the second perigee

is at rc = 6574.3308km at t = 305.6 minutes. The first "

perigee is at r0 and 9O . The orbital period can be

x *.* - ~ - .~.%*
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considered to be 305.6 minutes which is the same as in the

general case. Since4AFg/FgO depend on 0 and rc, its

magnitude varies from zero at perigee at t = 0 to nearly

-0.7726x 0- 4 at t = 102.0 minutes, then is zero at apogee

at t = 152.8 minutes,is 0.77263x10- 4 at t = 295.4 minutes,

and is finally again zero at the second perigee point at t =

705.6 minutes. Thus, the period of oscillation in

6Fg/FgO is equal to the orbital period of 305.6

minutes. The length (x) of the structure oscillates about

its static length (xs = 1.0 km) from the very beginning

.;with maximum amplitude of x equal to approximately 0.0045

percent of xs and with period about 1.1 minutes. A plot

of x/xs versus time is show in Figure 43(b) (G only).

*9. S ecial Case 2 (0 = i/2) Figure 44 shows a plot of e

and 0 versus time for special case 2. The effects on

orbital motion are negligible. The apogee and perigee points

and orbital period remain the same as in Special Case 1.

. ' ~* Since ml is equal to m2 , and 0 is always w/2, the

-. differential gravitational force CFg is zero at all

times. However, the computer data shows4Fg/FgO equal

A to approximately 0.51xi0 - 12 . This small numerical value

is due to round-off and truncation errors. The length (x)

of the structure oscillates about its static length (xs)

from the very beginning with a constant amplitude equal to

its initial axial deformation (0.000023 km). The period of

oscillation in x is again about 1.1 minutes. A plot of
.4
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x/x s versus time is shown in Figure 45(b) (6 only). For an

enlarged scale of x/x s the oscillation pattern of x would

be seen similar to that in Figure 22(b).

Special Case 3 (0 = 0). In this case also, there is no

noteworthy perturbation in the orbital motion of the

structure. Perigee and apogee points and the orbital period

can be taken the same as in the general case. Since 0 is

zero at all time, the differential gravitational force

(dFg) in this configuration has the maximum values of all

four special cases. This is because the masses, ml and

m2 , are farthest apart with respect to the earth.

AFg/Fgo has maximum amplitude equal to 0.15211x10 - 3 at

perigee at t - 0 and 305.6 minutes and minimum amplitude

equal to 0.333766x10- 5 at the apogee point at t - 152.8

minutes. The variation of AFg/Fgo with time will be

similar to that shown in Figure 31(a) (large eccentricity).

The oscillation in x with time is of the same kind as shown

in Figures 32(a) (large eccentricity) for the general case.

Two distinct kinds of oscillation in x can be observed as

can be seen for the general case. One is about its initial

length (xO ) with larger amplitude (maximum amplitude equal

to 0.0028 percent of x0 ) and greater period of oscillation

(approximately equal to one orbital period of 305.6

minutes). The other kind of oscillation in x can be

considered about its static length (xs ) with small

amplitude (only 0.0009 percent of xs ) and closely spaced

° U

° ' .. . . .. ~ 5
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(period about 1.1 minutes). A plot of -../x s versus time is

shown in Figure 46(b) (B only).

Spgecial Case 4 (e + 0 = 0). Figure 47 shows a plot of

8 and 0 versus time for Special Case 4. Again, there is no

noteworthy perturbation in the orbital motion of the

structure. As both the parameters rc and 0 are changing,

-Fg/Fg 0 changes along the orbit. However, since ml is

equal to m2, AFg/FgO is expected to take zero values

when e = w/2, 3w/2 and 5w/2 radians. Also, dFg/Fgo

decreases with increase in rc. Some critical values of

4Fg/Fg0 are shown below:

t (minutes) ,_Q/_gO

0 -0. 15211xl0 - 3  (perigee,
9 = 0)

24.8 0.11699x10- 6  (9 = w/2)

41.8 0. 74749x 10- 5

P. 152.8 0. 33764x 0- 5  (apogee,

264.0 0.7475x10 - 5

" 281.0 -0.15747xI0 6-  (9 = 3n/2)

305.6 -0.15211x10- 3  (perigee,
9 = 2W)

As far as the effects of this special orientation on the

length (x) of the dumbbell is concerned, the instantaneous
'A

length oscillates about its static length (xs ) from the

very beginning with a constant maximum amplitude equal to

the initial axial deformation (xo-xs = 0.000023 km) and

with a constant period approximately 1.1 minutes. The plot
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of x/x s versus time is shown in Figure 48(b) (S only).

Effects of Total Mass

Until this point the total mass (m) of the space

structure selected is 3600 metric tons (1.0x106

N-min 2 /km). A relatively light-weight structure of total

mass (W) equal to 36 metric tons (1.0x10 4 N-min7/km) has

been selected next. The mass of 36 metric tons is greater

than the value of 24 metric tons which is the mass of the

one kilometer long truss-like structure (Appendix C). The

additional mass above the 24 metric tons may be due to the

payload and any smaller structures erected on the main

structure. The orbit selected is elliptical with large

eccentricity (e = 0.56). All the inital conditions and

physical parameter values (Example No. 29, Table 2(a)) are U

the same as in the previous case where m = 3600 metric tons

(Example No. 1, Table 2(a)). The computer data show that

the decrease in the value of m does not affect the orbit in

any respect. This confirms the result which can be inferred

from the equations of motion (2.14) with m, = m2 (i.e.

ml/m 2 = 1) and only gravitational force acting on the

structure. As can be seen in Figure 35(b), the decrease in

the value of m does not have any appreciable effect in 0

either.

The variation of OFg/FgO with time (Figure 34) here
4,
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is similar to that obtained for the higher value of m. The

magnitude of AFg is almost two orders of magnitude smaller

in this case because m is decreased by two orders of

magnitude. Similarly, the value of Fg 0 is equal to

331999.63214 N which is two orders of magnitude smaller than

that for m = 3600 metric tons. Figues 35(a) shows a plot of

X/xs versus time for both the values of m (3600 metric

tons and 36 metric tons) during the first 110 minutes of the

400 minute total duration. As is clear from the figure, the

dumbbell length (x) for m = 36 metric tons oscillates about

x. from the beginning with a constant maximum amplitude

equal to the initial axial deformation (xO-xs = 0.000023

kin) and with a constant period equal to approximately 1.3

minutes. Not only the amplitude of oscillation in x but

also the period of oscillation are different here from those

for m = 3600 metric tons.

Keeping m constant at 36 metric tons, the ml/m 2

ratio is changed from 1.0 (case above) to 3, and the

solution of the equations of motion is obtained again

(Example No. 30, Table 2(a)). The computer data do not show

any significant changes in any parameters except the

expected change in the value of amplitude of

OFg/FgO. The only other significant difference here is

the oscillation in x. The amplitude of oscillation in x

.. remains almost as that for mj/m 2 = 1.0, but its period

of oscillation in x is now decreased from 1.3 minutes to 0.6

minutes.

• ." 4..".."
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p Thermal Effects

The combined effects of radiation heating and

differential gravitational force on the truss-like

rectangular space structure is studied next. The dumbbell

V. masses, ml and m2 are considered as point masses; and

therefore, they do not have any areas to absorb radiation.

The solutions for the complete equations of motion of the

space structure are obtained in order to examine the effects

of the radiation heating on its orbital and attitude motions

and axial deformation simultaneously. Results are obtained

to observe the relative contributions of the various

possible radiation heat sources, namely, direct solar,

earth's albedo, and earth's direct radiation.

The influences of altitude (rc), orientation of the

structure with respect to the sun and the earth (0 and 0),

and the structure's surface area-to-mass ratio (Asf/m) on

the thermal responses of the structure have been studied.

The orbits selected for these studies are circular and

elliptical. The static length (xs ) of the space structure

is the same for all cases, and is equal to 1 km. As the

space structure goes around the earth in an orbit, it passes

through the earth's shadow. The locations of the space

structure's entry into, and exit from, the earth's shadow

for various orbits and altitudes are given in Table 3. The

initial temperature (TO ) is taken to be equal to 290 OK.
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Effects due to the combined thermal and differential

gravitational force versus time are plotted along with those

due to the differential gravitational force ior comparison

of the results. The step sizes considered for the

computations are 0.2 minutes when 191 1 w/2 and 0.1 when

,'91 1 /2 "
~%

Maximum and Minimum Eguilibrium Temperature

The equilibrium temperature is heavily dependent on the

altitude and the orientation of the space structure with

respect to the sun and the earth. Figure 36 shows the space

structure's orientations and its locations in an orbit

giving maximum and minimum equilibrium temperatures at a

given altitude. Table 4 represents the maximum and minimum

equilibrium temperatures at three altitudes of contemporary

concern taking into account all three possible sources of

radiation heating (direct solar, earth's albedo, and its

direct radiation) separately and then jointly. The effect

of direct solar radiation remains constant with altitude,

but the effects of the earth's albedo and its direct ".

radiation decrease with increasing altitudes with respect to

the earth. It can also be seen from the results that in the

geosynchronous orbit (GED) the contributions of the earth's

albedo and its direct radiation are virtually zero. In the

earth's shadow in a given orbit, the contribution to

II
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ptemperature change comes solely from the direct earth
radiation and decreases with increasing altitudes.

The temperatures given in Table 4 are the absolute

maximum (sunlight side) and minimum (earth shadow side) at a

given altitude. In the present study, we consider a linear

relationship between the temperature difference and the

axial deformation of the structure. It can therefore be

concluded that the amount of axial deformation of the space

4 structure is controlled by these temperatures and the

initial temperature (TO). Thus, it is possible now to

P.* estimate the maximum relative contributions to the axial

deformation of the structure from the direct solar, earth's

albedo, and earth's direct radiation when the space

structure attains radiation equilibrium. For example, in

low earth orbit (LEO) at the altitude of 200 km when the

structure is in the sunlight side and attains thermal

radiation equilibrium, the maximum contribution from direct

"* solar radiation is approximately 56.0 percent of the total

* ~.radiation effect; that from the earth's albedo radiation is

about 29.0 percent of the total radiation effect; and that

from the earth's direct radiation is 15.0 percent of the

total effect. These relative contributions from the various

radiation sources to the structural deformation vary greatly

with the initial temperature (TO).

q
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Thermal Effects in General Orientation

The maximum and minimum equilibrium temperatures

computed above are independent of time. The orientation of

the space structure with respect to the sun and the earth is

also restricted by the simple fact that we require the

temperature to be a maximum or minimum. Results are

presented below for a general situation. Mass and surface

area of the structure exposed to radiation come into the

picture now for the evaluation of the temperature at a time

t. The mass (M) of the one kilometer long plate-like space

structure (link structure connecting the two dumbbell

masses, ml and m2) is approximately 24 tons, and the

ratio (Asf/Asd) of the total surface area to the surface

area of one side of the rectangular structure is 2.0 (Table

1 and Appendix C). The total mass m) of the complete

system is still 3600 tons (1.0x10 6 N-min 2 /km). The

ratio of the total surface area (Asf) to the total mass

(W) of the space system is 0.000486 m2 /kg. Complete

initial conditions and physical parameter values for these

runs are given under Example No. 31 through 33 in Table

2(b). In these cases the space structure is permitted to

assume any orientation as related to the sun and the earth

with respect to time (general case). Results are obtained

for all three sources of radiation.

Circular orbits in LEO and GED (Effects of Altitude).

€ ~44*~ 44~4 * ~ 4* -- K . ---
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p. First of all, we study the relative contributions from the

three major sources of radiation. For a better illustration

of the influence of the altitude on the thermal effects of

these three sources on the space structure motion and

deformation, circular orbits are selected at two altitudes -

one at 200 km (LEO, r0 = 6574.33 kin) and two at 75900 km

(GEO, r0 = 42274.33 km) - from the surface of the earth.

Figures 37(a), 38(a), and 39(a) show the plots of

temperature (T), x/xs, and 0 versus time, respectively for

the circular orbit at the altitude of 200 km. Figures

37(b), 38(b), and 39(b) give the plots of T, x/xs, and 0

versus time respectively for the circular orbit at the

altitude of 35900 kin. The computer data are obtained for

about a 297 minute duration (more than 3 orbits) in LEO and

for about 1679 minutes (more than 1 orbit) in GEO.

At a given altitude (rc) and size (x) of the space

structure, the temperature (T) is a function of the

orientation of the structure with respect to the earth and

the sun and its location in the orbit (i.e., 8 and 0). The

temperature increases in the sunlight and decreases in the

earth shadow side. Figure 37(a) shows that in LEO the

minimum temperature occurs just befo- the structure exits

from the earth's shadow, and the maximum temperature at the

point where it is about to enter the shadow. It also shows

that except in the first orbit, the temperature is due to

only direct solar radiation is always below the initial

value
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-(290 OK). In LEO during the 3 orbit duration, the maximum

(sunlight side) and minimum (earth's shadow side)

1'. temperatures due to all three sources of radiation combined

are respectively 313.59 OK and 259.90 OK. Due to direct

solar and earth's albedo radiations combined, these are

respectively 305.27 OK and 243.51 OK. Due to direct solar

radiation alone, these values are respectively 299.33 0 K and

237.68 OK. The greatest contribution from the earth's

albedo radiation in the time considered is to increase the

temperature by approximately 14 OK and that from the direct

• "earth radiation is to further increase the temperature by

approximateiy 17 OK. These maximum contributions occur at

time equal to 270.8 minutes where the temperature due to

only direct solar radiation is 260.06 OK.

In GEO, the maximum value of the temperature in the

sunlight portion is 330.031 OK and the minimum temperature

which occurs in the earth's shadow is 201.570 OK. Figure

37(b) shows that at this higher altitude the distributions

of temperature with time due to direct solar radiation

alone, due to direct solar and the earth's albedo radiations

combined, and due to all three radiation sources (direct

solar, earth's albedo and earth's direct radiations)

combined, coincide with each other. From this it can be

concluded that the relative contributions from the earth's

albedo and its direct radiations are zero. All thermal

effects at such high altitudes can therefore be considered

UJ
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to be due to only direct solar radiation.

There can be seen three important differences between

4. ,.

temperature histories in LEO and GEO. First, in LEO the

space structure is never at radiatior equilibrium.

Radiation equilibrium is not achieved because the shorter

orbital period causes the heating rates to change much

+aster. Thus the transient term in Equations (2.26) has a

much greater effect in LEO than in GEO. Second, the much

greater heating from the earth increases the magnitude of

the temperature but it also moderates temperature

excursions. Third, the contributions from the earth's

albedo and its direct radiation heating are much greater in

LEO than in GEO.

The structural responses of the very large space q.

structure, i. e. the typical axial deformation of a one "

kilometer long continuum model of a tetrahedral truss, are

shown in Figures 38(a) and 38(b) in LEO and GEO,

respectively. The change in length of the structure follows

the temperature histories given in Figures 37(a) and (b).

In LEO and GEO alike, the axial length (x) fluctuates

according to the temperature histories. As for length,

although there are no contributions from the earth's albedo

and its direct radiations in GEG (Figure 38(b)), these

contributions are seen to be quite significant in LEO

(Figure 38(a)). In LEO, due to only direct solar radiation

the maximum increase and decrease in the length (x) are

.o7.
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respectively 0.039 percent and o.1918 percent of the initial

length (x 0 = 1.000023 km). Due to combined direct solar

and earth's albedo radiations, the highest increase and

decrease in x are respectively 0.0557 percent and 0.1704

percent of x0. During the same three orbit duration in

LEO, the values of maximum increase and decrease in x due to

all three radiation sources combined are respectively 0.0872

percent and 0.109 percent of x0 . In all cases the highest

increase in x occurs in the sunlight side of the orbit,

whereas the greatest decrease in x occurs in the earth's

shadow side of the orbit.

In GED during the 1500 minute duration (more than one

orbit), the largest increase in length (x) of the structure

is approximately 0.1454 percent of the initial length

(X0 ). The largest decrease in x, is approximately 0.326

percent of x0 . The maximum increase of x occurs in the

sunlight side, and the maximum decrease of x occurs on the

shadow side of an orbit. It should be mentioned here that

the change in length of the structure due to thermal effects

is seen to be of much more significance than that due to

only the differential gravitational force.

Figures 39(a) and (b) respectively show the plots of

the attitude (0) of the space structure versus time in LEO

and GEO under the ir.nfluence of various radiation sources and

the differential gravitation force. These plots show that

the radiation heating has caused increased effects on 0.

.
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Both in LEO and GEO the dumbbell oscillates about its local i

vertical with increased amplitude. The amplitude and period

of libration now do not remain constant. Even in LEO, the

contributions from the earth's albedo and its direct
radiation heating to change the values of 0 are negligible

compared to the direct radiation heating. In LEO during the

three orbit run, the amplitude of oscillation in 0 varies

between approximately 0.3683x10- 4 radians and

0.36566x10 2 radians. The period of libration varies

between approximately 36.5 minutes and 57 minutes. In GEO

during the one orbit period, the amplitude of oscillation in

0 varies from approximately 0.142577x10- 2 radians to

0.91768x10- 2 radians, and the period of libration varies

between approximately 638.8 minutes and 761.3 minutes.

Regarding the effects of the radiation heating on the

structure's orbital motion, the computer data indicate that

the orbit remains perfectly circular for all values of time

at both altitudes (200km and 35900km). As before, for LEO

and GEO, the orbital periods are respectively 88.4 minutes

and 1441.7 minutes.

91!ji2j _jgrit1. Radiation thermal effects on the

structure are obtained next by requiring the one kilometer

long space structure to travel in an elliptical orbit as

considered in earlier sections. The perigee of the

elliptical orbit is at an altitude of 200 km (r0 = 6574..7

km) and the apogee at an altitude of 17108.68 km (r0 =

A".- v - ' v --. "-,-'' -A '-,", ',"-,"- . .. ' .2--2- ° . . .*," "ii--.-. . > -i .-o o: -' "
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23,483.013 km) i.e., the orbit has eccentricity (e)

approximately equal to 0.56. The orbital period of this

configuration is 305.6 minutes. The thermal effect on the

space structure is now dependent not only on the orientation

of the structure with respect to the sun or the earth and

its location in the orbit, i.e., on 0 and 9, but also on its

distance from the earth i.e. on rc. The inital conditions

and physical parameter values for these runs are indicated

under Example No. 33 in Table 2(b). The solution of the

equations of motion is obtained for a duration of more than

one orbit (400 minutes).

Figure 40 shows a plot of temperature distribution (T)

with time in such a general orbit. The contribution from

direct solar radiation remains constant with altitude

whereas the contributions from the earth's albedo and its

direct radiation heating decrease with increasing

altitudes. These latter contributions are highest near the

perigee point. Due to the total radiation heating during

the 400 minute period considered, the maximum temperature is

317.210 OK, and the minimum temperature is equal to 212.954

OK. The structural response i.e, the change in length (x)

of the structure, follows the temperature distribution. A

plot of x/s versus time is shown in Figure 41(a). The

maximum increase and decrease in x due to the total thermal

effects in the 400 minute duration are respectively about

0.0978 percent and 0.283 percent of the initial length
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Figure 41(b) shows a plot of 0 versus time. Unlike the

circular orbit, the attitude motion (0) of the structure is

seen to be undisturbed by the radiation thermal effect in

the elliptical orbit. The computer data however show a

slight difference between the values of 0 due to the

differential gravitational force alone and due to the

combined effects of radiation heating and gravitational

force. For example, the maximum 0 due to the gravitational

force alone is 7.9888049 radians while it is 7.9927713 Il

radians due to the total radiation thermal and gravitational

effects combined. This may be because the orbit eccentricity

is much more influential than the thermal effects changing

the attitude motion of the space structure. The computer

data also indicate that radiation heating has small or

negligible effects in changing the orbital motion of the

structure.

Thermal Eff ects in Controlled Orientations

Four special cases are selected as shown in Figure 13.
-

In these cases as described in Chapter III and in an earlier

section in this chapter, the space structure is required to

pp. have a fixed orientation with respect to the sun or the

earth for all time. The importance of such controlled

orientations is outlined in Chapter III. The orbit selected

/ , p
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is the elliptical one as above. The complete initial

conditions and parameter values are presented in Example

No. 34 through 37 in Table 2(b). Results delineating the

thermal effects of various radiation sources on each special

case are presented below. Although in some instances the

solution of the complete equations of motion is obtained for

more than the 400 minute duration, the results and

discussion presented here are based on the 400 minute

duration only. In all cases, the computer data show that

perturbation of orbital motion of the structure is either

zero or negligible.

S jecial Case 1. Since the structure is always

perpendicular to the sun vector (i.e. 9 + 0 = w/2) in this

case, the space structure gets maximum direct solar

radiation heat. Therefore, by allowing the space structure

to be in such an orientation we expect to get the maximum

thermal effect on the structure due to direct solar

radiation. The distributions of e and 0 with time to

achieve such an orientation are shown in Figure 42. In this

case, the thermal effects due to the radiation sources

depend only on the distance of the structure from the earth,

location of the structure in the orbit, and its orientation

J with respect to the earth. The structure's orientation with

respect to the sun is fixed. A plot of T versus time is

shown in Figure 43(a). The maximum and minimum temperatures

during the 400 minute period due to the total radiation

I

..... o-----------------------------.
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heating are respectively 346.509 OK and 220.657 OK. Due to n

only direct solar heating, these are respectively 770.445 1:

and 218.352 OK. On the sunlight side, the temperature due

to direct solar radiation thus reaches the equilibrium value

(Table 4). Figure 43(b) shows a plot of x/x s versus

time. The largest increase and decrease in the length (x)

due to the total radiation thermal effect are respectively

0.2067 percent and 0.2577 percent of the initial length

(xO). Due to direct solar heating alone these values are

respectively 0.1479 percent and 0.2659 percent of x0. Due

to the earth's albedo and its direct radiation heating the

maximum increases in x are respectively 0.0371 percent and

0.0263 percent of x0 . It is noteworthy that the

distributions of T and x/xs in most part of the sunlight

side remain almost uniform.

Sgggial Case 2. The structure is required to be at

right angles to the earth-space structure vector at all

times (i.e. 0 = W/2). The structure thus gets maximum

radiation from the earth (albedo and direct earth

radiation). The distributions of e and 0 with respect to

time for such an orientation are shown in Figure 44. The

temperature distribution and structural response now depend

on the altitude, location in the orbit, and orientation with

respect to the sun, of the space structure. The structure

has a fixed orientation with respect to the earth. A plot

of temperature (T) versus time is given in Figure 45(a).

- -'. ' - ,," '-", .>,- -"- - " "- , , , : _'-' " ,-: ". :. ..... , i.. - i . . - --
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The maximum and minimum temperatures due to the total

radiation heating are respectively 317.49 OK and 217.76 OK.

The values of the temperature due to direct solar radiation

only are, respectively 313.572 OK and 214.968 OK. Figure

45(b) shows a plot of x/xs versus time for this special

case. The greatest extension and shortening of the length

(x) of the structure due to the total radiation heating are

0.09981 percent and 0.2672 percent of the initial length

(xO), respectively. Due to direct solar radiation alone,

these quantities are respectively 0.08496 percent and 0.2773

*percent of x0 . Due to the earth's albedo and its direct

radiation heating the maximum increases in x are 0.0495

percent and 0.04248 percent of x0 , respectively.

S In this orientation the structure

experiences the least radiation heating from the earth. The

structure's longitudinal axis is always aligned with the

local vertical (rc-vector) i.e., 0 - 0 for all t. As in

* "Special case 2, the temperature and structural response

depend on the altitude, location in the orbit, and the

orientation with respect to the sun. The maximum

temperature due to the total radiation heating during the

400 minute period is 321.326 OK, and the minimum temperature

is 207.130 OK (Figure 46(a)). The maximum and minimum

temperatures of the structure due to direct solar radiation

heating only are 315.445 OK and 206.640 OK, respectively.

... . . . . . . .... . . ... . . ... . . . . . . . . . . .
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p The distribution of x/xs with respect to time is shown in

Figure 46(b). The contributions from the earth's albedo and

its direct radiation are smaller, compared to the direct

solar radiation effect. The greatest elongation of the

length (x) of the structure due to the total radiation

heating is 0.1124 percent of the initial length (N,) and

the peak shortening in x due to this effect is 0.3043

percent of x0 . The greatest elongation of x due to the

direct solar radiation only is 0.091 percent of x0, and

the largest contraction in x due to the direct solar

radiation heating alone is 0.3062 percent of xO. On the

sunlight side of the orbit the largest increase in x due to e

the earth's albedo and its direct radiation heating are

0.0292 percent and 0.0214 percent of x 0 respectively. In

the earth shadow region, contributions from these

Sterrestrial radiations are nearly zero.

Sgecial Caug 4. The structure is made to align with

the sun vector (i.e., e + 0 - 0) and so, it receives a zero

amount of direct solar radiation. The structure is thus

under the influence of only the terrestrial radiation. The

distributions of e and 0 with respect to time are show in

Figure 47. Figure 48(a) shows a plot of T versus time. The

temperature drops continuously with time except for a small

increase near perigee due to the strongest intensity of the

earth's albedo and its direct radiation at this region. As

in Special Case 1, the structure has a fixed orientation

0Z
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with respect to the sun. Therefore, the temperature and i

structural response of the system depend on its distance

from the earth, its location in the orbit, and its

orientation with respect to the earth. The extreme

temperatures of the structure due to the total radiation

heating in the 400 minute duration are the initial

temperature (290 OK), and the minimum temperature of 161.127

OK. Figure 48(b) shows a plot of x/xs versus t. At any

time greater than zero the structure is in compression. The

largest decrease in length (x) due to the total radiation

heating is 0.4722 percent of the initial length (O). If

only direct solar radiation is considered, x decreases by

0.5546 percent of x0 . The largest change in x due to the

earth's albedo and its direct radiations are 0.055 percent

and 0 0714 percent of xO, respectively.

Effects o _ur a Ar Ratio

Material properties including surface properties are of

great importance regarding the thermal response of a structure.

Reliable material data are a prerequisite to an accurate thermal

structural response prediction of a space structure. Another

fundamental quantity upon which the thermal response of a

space-structure is greatly dependent is the surface area-to-mass

ratio (Asf/m). In this study, three values of Asf/m ratio

0.000486 m2 /kg, 0.0486 m2/kg and 2.778 m2 /kg, are
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selected. The thermal effects on the structure due to the total

radiation for these three values of the Asf/m ratio are

compared to each other considering the space structure in the

elliptical orbit (e = 0.56, and perigee at 200Km altitude)

described above. The complete set of initial conditions and the

physical parameter values for these runs are given in Example

No. 33, 38, and 39 in Table 2(b). The results and discussion

presented below are based on the 400 minute duration.

Figures 49, 50(a) and (b) show plots of T, x/xs, and 0

versus time for the three values of the Asf/m ratio under the

influence of the total radiation heating. These plots show that

T, x/xs, and 0 do not undergo any appreciable change when the

Asf/m value is changed from 0.000486 m2 /kg to 0.0486

m2 /kg. For an Asf/m ratio equal to 0.000486 m2 /kg, the

radiation thermal effects on these variables have already been

discussed (Figures 40, 41(a) and (b)). On the other hand, for

the higher value of the Asf/m ratio (equal to 2.778 m2 /kg),

the distributions of T, x/xs and 0 with respect to time are

very different from those for the other two values of the
.'

Asf/m ratio. The temperature in the case of Asf/m equal to

2.778 m2 /kg changes much faster with the change in heat load.

There are sudden drops and rises in the temperature variation

, while entering into, and exiting from, the earth's shadow.
•J

respectively. As before, the maximum temperature occurs when

the space structure is in the sunlight side, and the minimum

,. temperature occurs when it is in the earth's shadow region of
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the orbit. The structural response (x/xs vs. t) follows the U

temperature history (Figure 50(a)). The maximum increase in the

length (x) of the space structure is approximately equal to

0.2454 percent of the initial length (xO), whereas the largest

decrease in x is approximately equal to 0.6758 percent of x 0 .

More remarkable is the influence of thermal effects on the

attitude (0) of the space structure with Asf/m equal to 2.778

m2 /k-g (Figure 50(b)). The 0 versus t curve in this case

closely follows those obtained for the previous two values of

the Asf/m ratio until the end of one orbit period. From that

point onward, instead of decreasing as is the case for the other

two values of the Asf/m ratio, 0 now keeps continuously

increasing at a much more rapid rate. The value of 0 at the end

of the duration considered here (400 minutes) is approximately

21.914 radians. The structure is thus seen to tumble

continuously. This continuous rotation of the space structure

about its center of mass causes the radiation heat load to

change accordingly. This is the main reason behind the faster

oscillation in T and x/xs after t equal to 313.1 minutes in

the sunlight side of the orbit (Figure 50(a) and (b)).

-' As we saw above, the total thermal effect on the structure v

which has a large value of the Asf/m ratio is very

significant. The relative contributions from the earth's albedo

and its direct radiation heating are studied next in such a

structure. We are interested in the maximum contributions from

these radiation sources. Therefore, the orbit selected is a

'".
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circular one at 200 km altitude (LEO), and the structure is

considered to be always perpendicular with respect to the earth

(Special Case 2, 0 = w/2). The solution of the equations of

motion is obtained for an almost 4 orbit duration (352

minutes). A complete set of initial conditions and values of

physical parameters are given in Example No. 40 in Table 2(b).

The structure has the Asf/m ratio equal to 2.778 m2 /kg.

-,It can be observed in Figure 51(a) that the temperature

reaches values of radiation equilibrium even in LEO, where the

orbital period is short (88.4 minutes). In the sunlight portion

*.. the maximum temperatures are 330.405 OK, 351.650 OK, and 362.443

OK respectively due to direct solar, direct solar plus the

earth's albedo, and all three sources of radiation heating

~(Direct solar, earth albedo and its direct radiation). In the

earth's shadow part, the minimum temperatures due to these three

*combinations of radiation sources considered are 80.427 OK,

80.427 OK, and 210.536 OK, respectively. Figure 51(b) shows a

- .plot of x/xs versus time. For total radiation heating, the

maximum increase and decrease in x are, respectively 0.2635

-* ". percent and 0.29022 percent of x0. If only direct solar

4i radiation is considered the maximum increase and decrease in x

are 0.12462 percent and 0.7642 percent of x0 , respectively.
."

In the sunlight part, the largest change in x due to the earth's

albedo and its direct radiation considered separately are 0.0778

percent and 0.0397 percent of x0 respectively. In the earth's

4' shadow side, the contribution from the earth's albedo radiation

.%%
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is zero, while the largest change in x due to direct earth

radiation alone is 0.474 percent of x0 .

°b

4 a
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Radiation Pressure Effects

Lastly, in order to delineate the effects of the

radiation pressure on a space structure's axial deformation

and motions, orbital as well as attitude, the complete

equations of motion are solved taking into account the

various external forcing functions due to the radiation

pressure. First, effects of direct solar radiation pressure

have been studied considering the structure in a general and

in a special (Special Case 1) orientation with respect to

the sun and/or the earth. The direct solar radiation

pressure effects are obtained simultaneously with the

structure's orbital motion, attitude motion, and axial

deformation. The dependency of these effects on the surface

area to mass ratio (Asf/m) and on the location of the

center of pressure (point P) with respect to the center of

mass (point C) of the structure defined by the lp

parameter (see Figure 9), has been investigated. Second,

computer results are obtained to study the effects of total

radiation pressure (including direct solar, earth's albedo

and its direct radiation) on the space structure's axial

length and its orbit considering the space structure in a

special orientation (Special Case 2) which experiences

maximum contribution from the terrestrial radiation

pressure.

The elliptical orbit with perigee at 200 km altitude

L ' .
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(re = 6574.33 km) and apogee at 17108.68km altitude (rc

= 23483.014 km) (i.e., orbit eccentricity equal to 0.56) is

considered. The static length (xs ) is kept the same (1

km) for all runs. The locations of the space structure's

Kentry into, and exit from, the earth's shadow in such an

elliptical orbit are given in Table 3. For the purpose of

comparing the results, the distribution of various basic

parameters in the presence of combined effects of the

radiation pressure and the differential gravitational force

as a function of time are shown with those in the presence

,* of the differential gravitational force alone on the same

plot. The surface of the structure is considered to be

completely absorbing. The solution of the equations of

motion is obtained for a duration of more than one orbit

period (305.6 minutes). The step sizes considered for the

computations are 0.2 minutes when lei 1 w/2 and 0.1 minutes

when le: 1 v/2.

. iret gjj RdiaionPrsure Effect!

The complete sets of initial conditions and the

physical parameter values corresponding to these runs are

given in Table 2(c), Example no. 41 through 50. As in the

radiation thermal effects, the radiation pressure effects

are also very much dependent on the surface area to mass

ratio (As+/m) of the structure. It has been indicated in

2 °!
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Chapter II that the concept of solar sailing is possible for

large Asf/m values. Besides this quantity, other

quantities which may significantly affect the attitude (0)

and other variables dependent on 0, of the structure are the

magnitude and sense of the distance (1p) between the

center of pressure (P) and the center of mass (C) of the

structure (Figures 8 and 9). Results and discussion

presented in the subsection below demonstrate the effects of

the direct solar radiation pressure on the structure taking

these factors into account.

- tion of

~ mass.

To investigate the effects of the surface area-to-mass

(Asf/m) ratio on the radiation pressure effects, three

values of Asf/m are chosen. They are 0.000486 m4/kg,

0.0486 m2 /kg, and 2.778 m 2 /kg. It is assumed that the

*14 maximum magnitude of the distance (1p) between the center

'4 of pressure (point P) and the center of mass (point C) is

one-quarter of the one kilometer long space structure.

Since the structure selected has uniform rectangular cross

* section, the point P always lies at the mid-length.

However, the point P can be on either side of the point C

depending on the value of the ml/m 2 ratio. For example,

'4 when ml/m2 = 1, points C and P coincide to each other.

If ml/m2 > 1, P is nearer to mass m2 than C (i.e., P
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lies toward m2 from C). On the other hand, for ml/m2

1, P is nearer from mass ml, than C (i.e., P lies toward

in1 from C). Since our positive x-axis is directed toward

ml from C, ip is negative when ml/m 2 > 1, and it is

A positive when ml/m2 < 1. The sign of 1p is important

as it determines the sign of the moment (Q0 ) of the

radiation pressure about point C. Thus, the structure may

rotate about C in opposite directions depending on the sign

of 1p. Three values of ip are chosen for the computer

runs. These are zero (corresponding to mj/m2 = 1),

-0.25xs (corresponding to ml/m 2 = 3), and +0.25x,

(corresponding to ml/m 2 = 1/3). The structure is

permitted to take a general orientation with respect to the

sun and the earth.

Figures 53(a), 53(b), 54(a), and 54(b) show the plots

of the external forcing functions (Or. 0eq Oxg and

00) due to direct solar radiation pressure versus time

respectively for Asf/m equal to 0.000486 m2 /kg and for

the three values of lp. These quantities are seen to be

P%
complicated functions of rc, 0, and 0 for the given set

of the values of x, m, and lp (mI/m 2 ratio). All of

these parameters are zero while the space structure is

inside the earth's shadow as the structure does not then

experience direct solar radiation pressure.

For small values of the Asf/m ratio (0.000486

m2/kg, and 0.0486 m2/kg), the computer results show that
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the perturbations of orbit (re, 9), attitude (0). and

length (x) of the space structure due to the direct solar 9.

radiation pressure are negligible for all ip values. For

example, the radius of the orbit is perturbed by only a few

meters, and the orbital period may be considered unaltered.

0 changes at the most by ix1O - 5 radians, and the change in

x is within a few centimeters for the one kilometer long

structure. A plot of 0 versus t for Asf/m equal to

0.000486 m2 /kg is shown in Figure 52 during the 400 minute

period.

The effects of direct solar radiation pressures are

significant when the Asf/m ratio is large. T.,e variations

j of Or, 09, Q., and 00 with time for all lp values,

when Asf/m is large (2.778 m2/kg), are shown in Figures

56(a), 56(b), 57(a) and 57(b) respectively. These plots

also indicate that Or, Ge, Ox, and Q are affected

by lp values. This gives us a hint that for larger values

of the Asf/m ratio, lp values play a much greater role

in effecting the magnitude of the radiation pressure effects

on the structure. The computer data show that the effects

of the radiation pressure on the length (x) of the structure

is again negligible. For all lp values, the change in x

is only a few centimeters. The pattern of oscillation in .

is observed to be similar to that of the differential

gravitational force effect alone.

Increased perturbation of orbital motion is noticed at
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this higher value of the Asf/m ratio. For all three Ip

values (0, -0.25 km, and 0.25 km)q the variations of rc

and 8 with time are the same. Therefore, Ip values do not

perturb the orbit. The orbital period may still be

considered to be the same as in earlier cases (305.6

minutes). Some magnitudes of the increase and decrease in

rc are presented below for As+/m = 2.778 m2/kg, 1p =

-0.25 km, and a general orientation of the structure.

2ChanEge in rdue to D.S.

t (minutes) 8 (radians) with respect to G only (meter)

A 0 (perigee) 0 0

22.2 1.47418 -0.6

S 158.2 (apogee) 3.14162 +213.0 + increase

200.0 3.488e66 +404.0 - decrease

281.0 4.71705 +947.0 D.S. Direct

290.0 5 1196 +892.4 solar

305.6 (perigee) 6.28399 +4.5 radiation

31.0 7.87874 -943.0

400.0 8.98593 -339.0

Figure 55 shows a plot for 0 versus t for the three

lp values when Asf/m = 2.778 m2 /kg during 400 minute

period. The plot shows that at this higher value of

Asf/m, 0 is greatly affected by lp values. For all

three values of lp, the distribution of 0 with respect to

time is approximately the same from 0 to 278 minutes. This

' * distribution is the same as in the case of gravitational
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force only. During the period 0 to 278 minutes, the j
radiation pressure again does not affect 0. The magnitide

of 0 in this period increases continuously from zero to

7.91663 radians. After 278 minutes, 0 decreases for ip

equal to zero and +0.25km for the rest of the time. The

variation of 0 in this period is again very close to that

obtained for the gravitational force effect only. At t =

400 minutes, 0 equals 4.494324 radians for ip = +0.25 km,

and 4.206196 radians for lp = 0 and G only cases. Most of

this second period, the distribution of 0 for lp =

+0.25km is less than that for lp 0 or G only. The

largest difference in the values of 0 between ip = +0.25km
and Ip = 0 or 6 only is about 0.075 radians (at t = 281.S

minutes, 0 = 4.7468 radians). On the other hand, for lp

equal to -0.25km (or ml/m2 = 3), the variation of 0 with

time after 278 minutes is quite different. 0 in this case

increases from 7.91663 radians at t = 278 minutes to 8.0604

radians at t = 286.3 minutes. It then decreases to 7.675698

radians at t = 322.9 minutes after which it increases very

rapidly to a value of 9.91195 radians at t = 400 minutes.

* This means that the space structure is tumbling

continuously.

S2 aseqg_. As mentioned earlier, in this

orientation the space structure experiences maximum direct

solar radiation pressure because the structure is always at
'4 - a right angle to the sun vector (te + 0 = w/2). The ,
• 4

.4"
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variations of 9 and 0 with time for such an orientation are

given in Figure 42. The Asf/m ratio considered in this

case is 2.778 m2/kg. The values of Ip chosen are zero

(ml/m2 = 1) and -0.25 km (ml/m:_ = 3). In this orientation

we expect that the structure will be affected by the direct

solar radiation to a maximum extent. The plots of Or,

09, Q., and 00 versus time are shown in Figures 58(a),

4.- 58(b), 59(a) and 59(b), respectively. Again, the computer

data show that the length x) of the structure is hardly

effected even by the largest radiation pressure. The change

in x is within a few centimeters for the one kilometer long

structure. The oscillation in x remains very close to that

for 6 only case.

The orbital period of the elliptical orbit may again be

" considered unaltered at 305.6 minutes (although there is a

very slight change). Due to the direct solar radiation

pressure, rc is expected to decrease when :e: r w/2 and

increase for :: > Tr/2 in the same orbit. The changes in

the rc value at some points in the orbit are given below

" for As+/m = 2.778 m2/kg, lp = -0.25km and Special Case

1. As seen earlier, the lp values do not seem to effect

the orbit.

o , ." € ." ', '.."-'. '.. -' -" " ., ," " '. ." ,'.',-.-'. ' " " ' - ,' ,'-',-,-' .' -'.-'," "'," '£- " ","",''.'" ,'" "" "" "'.- "-
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Chan~q in rc due to D.S.

t (minutes) ' (radians) withresU&ttgG only (meter)

C) (perigee) 0 0

22.2 1.47418 -1.4 + Increase

152.8 (apogee) 3.141624 +325.0 - Decrease

200.0 3.486635 +615.0

281.0 4.71705 +1444.0

290.0 5.1196 +1348.6

305.6 (perigee) 6.28399 - 6.0

331.0 7.87874 -1447.0

400.0 8.98593 -523.0

.

Pressures

The main purpose here is to investigate the maximum

*effects of the earth's albedo and its direct radiation

pressure on the deformation of the structure. For this

reason the structure is considered to be always

perpendicular to the radial vector (rc) (Special Case 2, 0

v/2). The attitude motion (0) of the structure is

restricted now. However, we can still investigate the

maximum terrestrial radiation pressure effects on the

structure's length (x) and its orbit (rc, e). The..

structure is considered to have a high Asf/m ratio (2.778

m2 /kg). The initial conditions and physical parameter

.1
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values for the computer runs are given in Table 2(c).

Example no. 50. The value of 1p chosen here is zero.

., Figure 60(a), 60(b), 61(a), and 61(b) show the plots of

Or!, Q, Qx, and Q0 versus time due to direct solar

radiation only, direct solar and the earth's albedo

combined, and direct solar, earth's albedo and its direct

radiation combined for the period of 400 minutes. All of

these cases include the effect of the gravitational force.

Since the value of ip is zero, the moment (00) of the
.e

radiation pressure about the point C remains zero

throughout. Also since only a normal component of the r

terrestrial radiation pressure is effective (total p

transverse component is zero due to symmetry), the force

(Q.) along the length of the structure due to the

terrestrial radiation pressure is zero. So, the Qx versus

t curve shown in Figure 61(a) is solely due to the

contribution of direct solar radiation pressure. The plot

in Figure 60(b) shows that the terrestrial radiation

pressures also do not change the value of the moment (Qo)

about the center of the earth. A very small change in the

value of Or (force along rc) is noticed due to the

terrestrial radiation pressure when the structure is in the

earth's shadow. Since the earth's albedo is zero here, all

the contribution comes from the direct earth radiation

alone. The terrestrial radiation pressure acts outward.

which is opposite to the direct solar radiation pressure in

|V
f --..-
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the region :e: < T/2. Hence, in this part of the orbit the

terrestrial radiation tends to reduce the value of Or

obtained for direct solar radiation (Figure 60(a)). The

highest contribution (decrease in the value of Or due to _N
U.

direct solar radiation) from the terrestrial radiation

pressure occurs in the vicinity of the perigee point where

the altitude is lowest. The maximum decrease in Or due to

the earth's albedo radiation and its direct radiation

pressure are respectively 24.5 percent and 8.1 percent of
m

the direct solar radiation pressure Or-

The computer data shows that there is no added effect

in the length of the structure due to terrestrial radiation

pressure. As far as the perturbation of orbit is concerned,

the orbital period remains virtually uneffected. The

terrestrial radiation pressures have a tendency to increase

the value of rc as they act outward from the center of the

earth. Therefore, in the region :e! < w/2, the terrestrial

radiation pressure tries to moderate the decrease in rc

due to the direct solar radiation pressure, whereas in the

region le: > w/2, both types of radiation pressures tend to

increase rc. The extend of the terrestrial radiation

pressure effects on rc became quite clear from the data

presented below.

II

J°

|E
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, o.
Chane_ in _rc_ due t radiation

t Uprssures with resgect to

(minutes) (radians) . onl (i)

D.S. D.S.+ALB D.S.+ALB+D.E.

.5'

0 (perigee) 0 0 0 0

--.- ' 1.47418 -1.3 -0.6 -0.2
100.0 2.75063 +50.0 +53.0 +56.0

152.8 (apogee) 3.14162 +174.00 +179.00 +186.0

200.0 3.48663 +341.0 +348.0 +361.0

1281.0 4.71705 +829.0 +842.5 +870.0

305.6 (perigee) 6.28399 -0.40 -0.45 -0.45

These results show that the effects of the radiation

pressures on rc are very small, because rc is of the

order of more than 6.5x103 km whereas the change in rc

due to the radiation pressures is at most of the order of a'.:

few hundred meters.

A5 At

% %t



CHAPTER V

SUMMARY

These conclusions are based on the limited number of

short computer solutions. The conclusions are made within

the limitations imposed by the assumptions and

approximations stated in the preceding chapters.

Recommendations are made for future study in various aspects .

of the problem which warrant additional research. Reference

should be made to Table 2 again for a listing of the cases

treated.

Conclusions
J4

The study of the dynamic and thermal effects of three

major external disturbances, namely, the differential

gravitational forces, radiation heating and radiation

pressure forces on the axial length, attitude motion, and

orbital motion of a very large space structure has led to

the following conclusions:

1. The differential gravitational force does not have

any significant effect on the length, attitude, and orbit of

a very large space structure.

2. The radiation heating is very significant in causing

structural deformation and in producing libration in

1-218 U
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p. attitude motion of a large space structure. However, the

effect on the orbital parameters due to radiation thermal

effects is negligible.

3. The radiation pressure has negligible effect on

changing the axial dimensions of the structure, but it can

disturb the attitude and orbital motion of a large space

structure significantly. Of all the three external

disturbing sources, namely, the differential gravitational

force, radiation heating, and radiation pressure, the

radiation pressure causes the largest perturbation in the

orbital parameters of the orbit of a large space structure.

4. In low earth orbit (LEO), effects of the earth's

albedo and its direct radiation should be included in an

analysis investigating the radiation thermal and pressure

effects. At high altitude geosynchronous-like orbits (GEO).

albedo and direct earth radiation effects may be neglected

completely, and only direct solar radiation need be

considered.

5. A change in the differential value of the end
q.

masses of a large dumbbell space structure causes a change

in the differential gravitational force, but the effect due

to this on the space structure is negligible.

6. Change in the length of a space structure does not

produce any appreciable change in the effect of the

differential gravitational force on the structure. But the

dimensions of a space structure are of great importance in

4. o
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the radiation thermal and pressure effect analysis, because

increasing the dimensions of the structure leads to an

increase in the surface area exposed to radiation.

7. Increasing the value of the initial attitude angle

causes an increase in the libration of the large space

structure about its center of mass. An initially imposed

attitude misalignment however does not produce noticeable

changes in the length and the orbit of the structure.

8. Initially induced axial deformation of a large

space structure has considerable effect in changing the

length and attitude of the structure, but is has zero or

negligible effect on perturbing the parameters of the orbit

of the structure.

9. The increase in initial angular velocity (O )

induces a greater eccentricity of the orbit of a space

structure, and it greatly disturbs the attitude motion of a

very large space structure. For highly eccentric orbits,

the structure may tumble continuously. The orbit

eccentricity however has a very insignificant effect in

producing structural deformation.

10. Altitude from the earth of the orbit of a large

space structure has negligible influence on the differential

gravitational force effect, but the altitude can be more

influential in radiation thermal and pressure effects since

in lower altitudes, the terrestrial radiation in addition to

direct solar radiation should be considered in the analysis.

.... ... , < ,.. ,
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11. For all practical purposes at the altitudes

concerned, the attractive forces among the remote masses

(dumbbells) in the space system may be ignored completely

from the analysis.

12. The radiation thermal and pressure effects are

- .greatly enhanced by the increased area-to-mass ratio of the

structure. The area-to-mass ratio of the structure is found

to be one of the most important physical parameters leading

to an increase in the thermal and radiation pressure effects

on a large space structure.

'4 13. For all practical purposes, a change in the value

of total mass of the space system does not produce any

noteworthy change in the differential gravitational force

-" effect. However, it produces significant changes in the

thermal and radiation pressure effects because a decrease in

the total mass means an increase in the area to mass ratio

of the structure.

Recommendation fgr Future Research

The following recommendations are made:

1. Computer runs with a smaller integration time step

should be made to show the dynamic and thermal effects in

the space structure. The computations in the present study
%

were single precision. The step size considered here for the

: . , computations are accurate enough for studying the orbital

4



I

I- 222

motion and attitude motion. However, finer step sizes for

the computations need to be considered for a more accurate

analysis of structural deformation with a more flexible and

lighter structure.

2. In order to establish an accurate criteria to

achieve a practical range of the effects under consideration .;

and to establish the effect of possible resonance with

orbital or perturbation frequencies, computer runs should be

made for a larger range of initial conditions and physical

parameter values pertaining to a space system

3. The study of dynamic and thermal effects on a very

large space structure should be extended to include general

bodies with arbitrary shape, three-dimensional motion, and

an oblate, non-homogeneous earth.

4. While considering the thermal and radiation

pressure effects on a large space structures, a detailed

investigation should be carried out to check for the

possible thermal vibration, buckling, and anomalous body

motion due to thermal and pressure gradients which may exist

because of a part of the structure being in the sunlight

side and other part being in the earth's shadow, and/or

because one part is farther away from the sun than the

other, and/or because of the shadowing effect of one

component on another in the large space structure.

5. A refinement of the radiation thermal and pressure

analysis should be carried out by releasing the restrictions

aB
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imposed by the assumptions made here. For example, such a

refinement can be achieved by taking into account the slight

motion of the sun in right ascension and declination, type

of orbit (polar, equatorial, etc.), slight change in the

solar distance, possible variations of the solar constant,

general (real life) structural surfaces possessing various

optical and thermal properties simultaneously and variable

specific heat.

p "'
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APPENDIX A

DERIVATION OF EQUATIONS OF MOTION

A detail derivation of the equations of motion of a

dumbbell- shaped space structure (Figure 1) executing

coplanar motion (structure moving in orbital plane) in a

general orbit will be presented below.

-

Kinetic Ener

The total kinetic energy of the system can be expressed

as the summation of (i) the kinetic energy of the center of

" mass (C) of the system (Figure 2) with respect to the origin

(0) of the inertial reference frame and (ii) the kinetic

energy of masses m, and m2 with respect to the center of

mass (C) of the system [683. In vectorial notation, it can

be written as:

m 1 2
KE = (-) Cc. _c + (-) E mi(ki.x~) (A-1)

2 2 i=1

'. 2
where m=E mi  mI +m 2  (A-2)

i=1

-c is the position vector of point C with respect to 0,

x11 and x2 are the position vectors of masses m I and m,

with respect to point C.

The velocity of a moving point, say C, with respect to

1-233
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cylindrical coordinates is given by [82]

-c = rc io + rce to (A-7)

Where io and 1 are the units vectors along Cc and )

directions. Similarly, for points m, and m7, we can write

= 1 i + x 1  (8 + i) j (A-4)
= x (-i) + x2 (8 + ~ ) (-i) (A-5)

where i and . are the unit vectors along x I and the perpendi=Lular

to the x, the direction in the same plane.

Equation (A-l) gives on expanding

1

KE = (-) [m(-.r c ) + mI (,ql.l) + m2 ('K._2)3 (A-6)

Substituting Equations (A-3), (A-4), and (A-5) into Equation

(A-6), we get

1

KE = ( _ ) CmCcZ + (rcE)23 + ml[Ex 1
, + x 1

2 (6 + )]

+ m2 C 22 + x 2 (4 + 0)23} (A-7)

Substitution of values of x 1 and x2 given below

m2

(a) x 1  ------ x
m

m

(c) x = x1 + x 2
(A-B)

into Equation (A-7) yields

-U
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m m I  m2 .m 2

E =-- c+ (rc9)2] + -- [-- x)2 + (-- x) 2 (0 + 0)2)
2 2 1  m m

m2. ml m I

+ -- I(-- x 2 + (-- x) 2 (A + 0)23 (A-9)
2 m m

eo
0

2

Noting rn = - (A-I)

which we define as a "Reduced Mass,"

we get

m m
KE = (---)rc2 + (rco)]) + ()) 2 +xz (4 + 0) 2 (A-11)

2 2'

Potential _EnaMCy
lp

The total potential energy of the dumbbell system in

space consists of that due to the earth's gravitational

pull, attraction between the point masses, m and m2 ,

and strain energies, i.e.,

PE= Vg + Vm + Ue (A-12)

where

V9 - earth's gravitation potential function

Vm - potential function governing the attractive forces

between the point masses m and m2

Ue = strain energy of the system.

I
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According to Newton's law of gravitation, the attractive i

force, Fg i exerted by a body of mass mi moving around

the earth of mass Me at a distance, ri from mi, at

that location, is given by:

GMemi
Egi =- ------- Er (A-13) Z.r i 2 -

where er is a unit vector along ri line.

Since the gravitational force (Fgi) is conservative, we

can express it as the gradient (V) of the gravitational

potential (Vgi)

Egi = VVg i  (A-14)

Hence, it follows that
mi

Vgi = - GMe ---- (A-15)
r44

The total gravitational potential (energy) can be written

as
N mi

Vg = - GMe  E (A-16)
i=1 r i

For point masses ml and m2 , we get

ml m2
V= - GMe ( --- + --- ) (A-17)

rI r2

where the L~w of cosines gives,

(a) r 1
2 = rc2 + xl 2 + 2re x1 Cos-

(b) r:, 2 = rc 2 + x2 2 
-

2 rc x2 Cos0
(A-18)

Noting P= GMe =gR 2  (A-19)
In

*1Q

n [U
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we can write,

k,%

Similarly, for the attraction between masses ml and m-,

we can write

m1 m2
Vm = -6 - (A-21)

Thus substituting Equations (A-20) and (A-21) into Equation

(A-12), we obtain
ml m2 m1m2

SPE - P ( ---- - ---- ----- - Ue  (A-22)
r I  r 2  x

Substituting for r I and r2 from Equations (A-18) and

then for x I and x2 from Equations (A-B), we find the

total potential energy expression:

PE PC ---------------------------------- 4

f rc2 + (- M2) 2 + 2 m2 r. x Cos0)kI
m mm2 2 m

(r+ (- - x)z - 2 -- rc x Cos0

{roe + (-- x)2 - 2- c xCs} I!

m m

mlm 2. - 8 +U e  (-27.
(A-)

N x

.. augg~atgn _g _Ogtion.,

The general Lagrange's equations of motion [69, page 2773

are as below:

b'
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6KE 6KE 6PE
(a) -- ( ) --- = r6t 6P c  orc  6rc

KE 6KE 6PE
(b) -- (-.... ) +--- = Q

6 6K E  6KE )PE
(c) -- (---) + -- = Q0x

6 t 8x 6

6 6KE 6KE 6PE
(d) -------. ) + =

6t ' ) 0'
(A-24)

I
where Qr, Qe, Qx and 00 are generalized forcing

functions corresponding to rc, e, x, and 0 respectively.

We substitute for KE and PE respectively from

Equations (A-11) and (A-23) into above equations of motion,

V' and carry out the indicated differentiation with respect to

time.

The first of Equations (A-24) gives

m (c - rc6)

ml~rc + (m2/m) x CosO)
+ PC -------------------------------------------

{rca + (m2 /m)zxZ + 2rc(m2/m) x Cos0} 3 / 2

m2(r c - (m/m) x CosO)
+- ---------------------------------------- = r(rcl + (ml/m) 2 x2 -2rc(ml/m) x Cox0}3 / 2

(A-25)

The second of Equations (A-24) gives

m(4rc2 + 2 ercrc) + m('e + 0)xz + 2ffix(4 + Q) = (A-26)

The third of Equations (A-24) gives

-a

• " " ... " . • " " .'. ..... ." .' ... , . -. ... ., . '. .'. ... -..- v - .,-.- ." .'.-.'.. .-. .....-- " ... "'" " '
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X x(4 + 0) 2

.(m2/m) x + r c Cos,
+ 7h~ PC-------------------------------------------

.rcz + (m2/m)2 x2 + 2rc(m2/m) x CosO) 3 / 2

"m I /m) x - rc CosO)

- --- - - - - - - - - - - - - - - - - - - )

SrC2 + (ml/m)2 x2  rc(ml/m) ,x Coxo2)-'

Gmlm2 bUe
+ ----- - ----- = -(-27)

2V

The last of Equations (A-24) gives

A[i60, + 0) x2 + 2x x e +4))3

m-r c x Sin0)

{rcz + (m2 /m)zx 2 + 2rc(m2/m) x Cos0} 3 / 2

{r c x Sin0)
+ -.---- ---- ] ---------- --------

(rC2 + (ml/m)zx2 -2rc(ml/m) x Cox) 3 / 2

(A-28)
Making note of Equations (A-B) and (A-18), we find that

Equations (A-25) to (A-28) can be expressed in more compact

form as below:

'--p

ml(rc + xlCose) m2(rc - x-CosO)
(a) mrc - mrce + p----------------- -+ -----------

r 1
3  r 2 3

(b) mrc(rce + 2e- c ) + F(4 + ')x2 + 2Axx(6 + 0) =

(Xl + rcCosO)

(c) " - ;Wx(6 + 0)2 + (x -C-- +
r13

(x2 - rcCoso) 6mlm2 6Oe
- - - - - - - - 3 .--------------------

r23 xx

'
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(-1) 1
(d) 7 xZ ( + 6) + 2x," (4 + 03)3 + p ---- + --- ],rcSinO

rv' r2-'

(A-29)

Upon substitution of the last relation (d) into the second

relation (b) of above Equation (A-29), we get

(-1) 1

mrc(rce + 2 0 7c) -r p[---- + --- JxrcSin0 = (09 -00)
r13 r23

(A-30)"

The motion of the space structure now can be defined completely ".

by Equations (A-29a), (A-30), (A-29c) and (A-29d). These

equations are found in Chapter II (Equations (2.14)).
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APPENDIX B

GEOMETRY OF SPACE STRUCTURE AND ORBIT

The main purpose here is to derive the expressions

which show the geometric relationships of the incident

and reflected solar light vectors with the orbital and

body coordinate systems. Consider a structure in space

(Figure 1). XI, YI, Z I form a geocentric fixed

inertial rectangular coordinate system with center at 0.

Xo, yo, zo describe the the rotating orthogonal

orbital coordinate system with Cxo, Cyo, Cz o along

the local vertical, local horizontal, and the orbit normal,

respectively. Cx, Cy, Cz are the rotating orthogonal bcdy

coordinates axes fixed at the center of mass (C) of the

structure. The space structure is assumed to execute

coplanar motion. That is, the inertial coordinate axes
4.J

OX I and OYI, the orbital cordinate axes Cx o and Cy.,

and the structural cordinate axes Cx and Cy, all lie on the

same plane. The coordinate axes OZI, Czo, and Cz are

normal to the orbital plane.

Arbitrary Sun Position

At first a general case where the sun is at an arbitrary

position defined by the parameters w (angle between

I- 241
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the earth-sun line and the XI axis) and i (inclination
iI

of the ecliptic plane, which contains the sun, with

respect to the orbital plane) is considered.

Relation between the incident solar ligh t vector and

the orbital coordinate_syxtem. Let i., I., and ko be

the unit vectors along the orbital coordinate axes, -,

Y., and zo, respectively (Figure 62). The unit vector

(Ss ) along the structure (or earth)-sun vector (opposite

to the Incident light vector) can be expressed as

2s = So lio + So2lo + So3ko (B-1)

where, Sol, So2, and So 3 denote the components of Ss

along the orbital coordinate axes, xo, Yo, and z.,

respectively. Geometric consideration of the spherical

triangle formed by Cxo, CS, and CX I (Figure 62) gives

[see ref. 67, page 118-1213

(a) Sol = [Cose Cosr + Sine Cosi SinT]

(b) So 2 = -[Sine Cosr - Cose Cosi Sine]

(c) So3' -[Sini Sinw] J1

(B-2)

Upon substitution of the above relations (B-2) into

Equation (B-I), we obtain 1V

s = [Cose Cos€ + Sine Cosi Sin]io

* -[Sine Cosr - Cose Cosi CosrJo

-[Sini Sinrlk o  (B-3)

Rn the incident solar light vector and the

boqtordinate_tfm. Let i, j, and k be the unit vectors
4.
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along x, y, and z axes, respectively (Figure 62). The unit

vector Ss may also be expressed in terms of body

coordinates:

Ss = S1 i + S21 + Slk (B-4)

where, S1, S2, and S3 are the components of Ss

along the body coordinates axes, x, y, and z, respectively.

For the spherical triangle formed by the lines

CN, CX I , and CS in Figure 62, we can write [ref. 67,

Equation (6.2.4)3

Cos0s = Cosa Cos(eO+-w/2) + Sine Sin(O+4-w/2) Cosi

= CosT Sin(e+0) - Sine Cos(e+0) Cosi

(B-5)

where A. is the angle between the structure normal and the

structure - sun line.

Noting that S2 = Ss.j = -Ss.n = -CosAs  (B-6)

we can write,

S2 = -CCosr Sin(e+O) - Sine Cos(e+) Cosi] (B-7)

* Similarly, we can write

SI = CCosv Cos(e+0) + Sine Sin(e+O) Cosi] (B-8)

and

3 = -[Sine Sini] (B-9)
1.

Hence, after making use of the above expressions for S1,

S2, and S3 in Equation (B-4), we get

9s = rCos Cos(e+0) + Sine Sin(e+) Cosi] i

- ICosT Sin(e +) - Sine Cos(e -) Cosi] .

- [Sine Sini] k (B-IC)),

U
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Relation between the reflected solar light vector and
the body coordinate s2stem. In terms of body coordinates

V axes, the unit vector (Sr ) along the direction of the

reflected solar light may be expressed as

r  -Srl) + Sr2 + Sr3k

where, Srl, Sr2, and Sr3 are the direction cosines of

Sr with respect to x, y, and z axes. We note that the

vectors Ss, 9r, and n lie in the same plane.

We observe that (see Figure 63)

Sr - = COs s 1= -St2) (B-12)

Also, we have

S.n- = Cosa = -S2 ) (B-13)

Comparing Equation (B-12) with Equation (B-13), we get

Sr2 = S2 (B-14)

Similarly, we see that

ySri -S1 (B-15~)

and

SS 3 = -S3 (B-16)

Making use of Equations (B-14) through (B-16) in Equation

(B-11), we find that Sr, in the body coordinates, can be

written as

Sr = -S 1 1 + S2 J - S3k (B-17)

where, S1 , S2, and S3 are given by Equations (B-8),

(B-7), and (B-9), respectively.

;-V
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Relation between the reflected solar light vector and

the orbital coordinatesystem. The unit vector (Sr) along

the direction of reflected solar light can be written in

terms of the orbital coordinate axes as

S~r = Srolio + Sro2lo + Sro3o(B1)

where, Srol, Sro2, and Sro3 are the direction cosines

"- of Sr with respect to the orbital axes o, yo, and

zo, respectively. It can be readily seen that the following

relations exist between the body and orbital coordinate

systems (see Figure 62 or 63)

(a) i = Cos0io + Sin0ao

(b) j = -[Sin0i, - Cos0 ±o]

( (c) k ko

(B-19)

Substituting for i, j, and k from the above relations into

Equation (B-17), we obtain

Sr = -[SICos0 + S2 Sin03i,

+ [-SISin0 + S2Cos03],

- ES3 ko  (B-20)

Comparing Equations (B-18) and (B-20), we get the following

relations:

(a) Sral = -ES 1CoS0 + S2 Sin0]

(b) Sro2 = -[SjSin0 _ S2 Cos ]

(c) Sro3 = -CS 3 1

(B-21)

;.4.

S..
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Particular Sun Position

'p."

Now, by imposing the condition that the Sun lies in the

X, - ZI plane as in the thermal effect analysis ( i. e.,

i = n/2 and T = w/2 - i', where i' is the inclination of the

sun from the orbit normal), we find from Equations (B-2)
(a) Sol = CosO Sini"

(b) So2 = -Sine Sini'

(c) So3T = -Cosi'

(B-22)

These equations are given in Chapter II as Equations

(2.104). Similarly, Equations (B-B), (B-7), and (B-9)

respectively yield

(a) S1 = Cos(e+0) Sini'

(b) S2 = -Sin(e+O) Sini'

(c) S3 = -Cosi'

(B-23)

These equations are given in Chapter II as Equations

(2.102). Corresponding expressions for the direction cosines

of the reflected solar light vector (Sr) are given by

Equations (B-15), (B-14), and (B-16) in the body coordinates

(Equations (2.103) in Chapter I), and by Equations (B-21) in

the orbital coordinates (Equations (2.105) in Chapter II).

The expression for Cos(3s given by Equation (B-5) now

becomes

Cosa s = Sin(e+5.) Sini' (B-24)

-°,-
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JR which is rewritten in Equation (2.106) in Chapter II.

Finally, by assuming that the sun lies on the Xi-axis, i.

e., i' = w/2., we get the following trigonometrical

relations:

Equations (B-22) reduce to

(a) Sol = Cose

(b) So2 = -Sine

- ' (c) So =O0

(B-25)

* !Equations (B-23) reduce to

(a) S1 = Cos(e+0)

(b) S2 = -Sin(e+0)

(c) S3 = 0

(B-26)

pEquation (B-24) reduces to

CosMs = Sin (e + 0) (B-27)

-.°

.'.
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APPENDIX C

SELECTION OF PHYSICAL PARAMETER VALUES

" Com2utation of Eguivalent Progerties of the Truss-like

-'-

Structure

2-.

Consider the space structure to be an equivalent

continuum representation of an hypothetical space platform

composed of an assembly of tetrahedral truss (Figure 1i).

The equivalent continuum model of the large truss-like

platform can be viewed as a plate.

Eguivalent Mechanical Proerties

S

Elasti modul us and mass densi tg. The equivalent

extensional elastic modulus (E) of the continuum model is

given by r65, 663:

343 1 13

E - (E 1A 1 + E2A2 +- ------ EdAd) (C-i)
4 lh 9 d3

where

1 is the length of the members in the top and bottom -

layers

d is the length of bracing members which is given by

. d = 4[hz + (12/Z)3 (See Figure 12) (C-2)

1- 250
n54
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h is the height of the truss

El and A, are respectively the modulus of

elasticity and cross-sectional area of the top layer,

E2 and A2 are respectively the modulus of

elasticity and cross-sectional area of bottom layer,

and

Ed and Ad are respectively the modulus of

elasticity and cross-sectional area of the bracing

bars.

The equivalent mass density (r) is given by

= (IA A + A --- A ) (C-)

lh d

w*here , and are the mass densities of the

1 2 d

top layer, bottom layer, and bracing members, respectively.

Assume that all members are identical in all respects. Then,

(a) Al= A2 = Ad= Al

(b) E 1 = E 2 = Ed =E

(c) 1 d

r' F -= = F = F :
S1 2 d I

(C-4)

h is now given by Equation (C-2) as

h = 4(2/3)1 (C-5)

SWith these simplifications, the equivalent mechanical

properties of the truss become

r of C,
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".4

5743

E = (-------) EA 1  (C-6)
36 lh

lh

Consider the truss material made of aluminum, for which

E1 = 71.7 x 109 N/m 2  (C-8)

F1 = 2768 kg/m 3 -
1

For each member, let the

area of cross section, A1 = 100 x 10- 6 m2  (C-10)

(diameter, D 1.13 cm)

length, 1 = 6 m (C-Il)

Therefore, from Equation (C-5)

h = 4.899 m (C-12) 

Now, from Equations (C-6) and (C-7)

E = 6.689496 x 105 N/m2 = 6.689496 x 1011 N/km 2  (C-13)

F = 0.0978632 kg/m 3 = 2.71843 x 107 N-min 2 /km4  (C-14)

Eguivalnt___gmetri cal Proerti es

Area f±----------Sion. We assume that the width (zs )

of the structure to be 0.05 times the length (xs ) of the

structure, i.e.,

zs = 0.05 xs (C-15)

Hence, the area of the cross section (Acs) is given by

• U

S.I



i

'-253

Acs = 0.05 x. h (C-16)

For a 1 km long structure (xs = 1 km) with height (h) as

given by Equation (C-12),

Acs = 0.00024495 km2  (C-17)

Total mass of the truss structure. The total mass (M)

of the truss structure now is

M = 0.05 rh (C-1)
S

For a 1 km long structure (x = 1 km) with h and p

as given by Equations (C-12) and (C-14), respectively,

M = 6658.768 (N-min 2 )/km = 23.9715 ton (C-19)

Surface areas effective to radiation. In order to study

the effects of radiation disturbances on the space

structure, we need to know the area of the truss-like

structure effective to radiation influx. For this purpose,

we compute the area of each member of the truss projected

onto the x - z plane.

The inclination of a bracing (diagonal) bar from x-z

plane (top or bottom layer) is given by (Figure 11)

Sinu - (h/d) = 4(2/3) (C-20)

Then, Cosu - 1/43 (C-21)

The length of a bracing (diagonal) member projected onto the

x -Z plane is

r4 S.
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i

ibP d Cosu = (1/43) 1 (since d = 1) (C-22) .

The area (Apu) of a unit repeating element of the

tetrahedral truss projected onto the x - z plane is given

* below.

*.For a repeating unit surrounded by other units in all

sides,

4 (Apu)c 6(Dl) + 3 (Dblbp) (C-23)

For a repeating unit on the edge of the structure 'no

element on one side),

(Apu)e = 7(Dl) + 4 (Dblbp) (C-24)

.

where D is the diameter of the bars in top or bottom layer 3

Db is the diameter of the bracing members.

Let all members have equal diameters, i.e., D = Db = D

Then,

(a) (Apu)c = 3D(2 1 + lbp)

(b) (Apu)e = D(7 1 + 4 lbp)

(C-25)

We have,

number of bays along the length (xs ) of the structure,

N1 - (xs/l) (C-26)

number of bays along the width (zs ) of the structure,

.4S

29 z s

Nw = - ------ ) (C-27)
43 1

The total numbers of repeating truss elements

N' ., • ."' . *: .• .. "a • *. . , " " . " " ."
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NT = NIN w =--- (------) (C-28)

1.4.1

The numbers of repeating truss elements in the edges along

the length is equal to twice the number of bays along the

length (assuming N. Z 2). That is,

Ne = 2N 1 = 2(xs/l) (C-29)

Therefore, the numbers of repeating truss elements

surrounded by other truss elements,

Y's zS

Nc = (NT - N e ) = 2( ----- ---- 1) (C-30)
1 ./3 1-,'

Hence, the total area of one side of the plate-like

structure effective to radiation is (from Equations (C-25),

(C-29), and (C-30)) given by

Asd = 3NcD (2 1 + Ibp) + NeD (7 1 + 4 Ibp) (C-31)

The total surface area of the rectangular plate effective to

radiation is

Asf = 2 Asd (C-32)

For a 1 km long structure (xs = 1 km) with values of D

and zs as given earlier in Equation (C-10) and (C-15),

respectively,,

(a) Asd = 0.00087518 km2 , and

(b) Asf = 2 Asd = 0.00175036 km
2

(C- 71

In a case where the structure is covered on all sides with

•S
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thin aluminum foil, then

Asd = x s 2 s = 0.05 km2  (C-34)

Eguivalent Thermal Progerties

.- 9

Thermal expansion ro2ert.__The equivalent thermal

* expansion property (E.) of the structure can be determined

from the following relation [653.

43 1 1

Ea = --- [EIAIa 1 + E2A 'x2 - ------ EdAdad ]

lh 3 d
(C-35)

where al, a29 ad are the coefficient of thermal

expansion or contraction of the top, bottom, and bracing

members, respectively. As in earlier discussion, we

consider all bars identical to each other in all respects,

al= 2 = ad = al (C-;6)

In such case, Equation (C-35) reduces to

743
Eat= (- -) EIAI1j (C-37)

3h 1

For aluminum,,

l= 24.7 x 10 - 6 /OK

Substituting the values of h, El, A 1 , and 1 from Equations

(C-5), (C-8), (C-10), and (C-11), respectively and the above value*

of al, into Equation (C-37), we get %..

E= 24.34976 x 106 N/(km2-0 K) (C-79)

p.i .*ppi-
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APPENDIX D

SELECTION OF INITIAL CONDITIONS

The reference set of initial conditions is selected

from the equilibrium configuration of the structure in a

circular orbit under the earth's gravitational pull. Let L

be the Lagrangian function which is given by

L = KE - PE (D-1) J,

KE and PE are respectively kinetic 
and potential V.

energies of the system and are given by equations (A-7) and

(A-23) respectively. To obtain the equilibrium configuration 
7.

(steady state solution) [81, page 177], we have ,S

-0

6L
(a) = 0 

(b) 0

(c) 0 0

a~x

(d) =0

(D-2)

In all of the above relations rcq x, and 0 should be

replaced by zero.

Carrying out the indicated differentiation as in

Appendix A and writing in brief, we obtain,

1-257 Ile
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p ml(rc + xCoso) m2(rc - x2Coso)
(a) rc.- + --- --.......... + - = 0- --

m rl r2 -"

(b) Identically satisfied

(xi + rcCosO) (x2 - rcCosO)
(c) -I× (e + 0)z + pC --------------- -------------- -

'"ri r 2 3

m1 m2

"" + X a( g <) = II

(Here, Equation (2.16) is used to substitute for (6Ue/ X).)

(d) E ]rxSinO = 0
r1

3  r2

Equation (D-3d) can be satisfied by

either (a) 0 = 0

or (b) r1 - r2

(D-4)

The latter condition may indicate unstable equilibrium [51,

52] in which we are not interested at present. Therefore,

we choose the first condition, i.e., 0 = 0, which gives a

stable equilibrium. This configuration also gives the

largest possible differential gravitational force on the
system.

Let us assign the following set of values for the

variables at t - 0

(a) rc(O) - r 0

(b) 0(0) = 0 (Structure is released from perigee.)

(c) x(0) =0

(d) 0(0) = 0

'

..f : . . -. -.. -.- ' ,4'. - ' *. . . - - -' .. ' .. ' . . . . . .. . - - -. -. '. .. -. -. -" - " . --
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(e) ic (0) 0

(f) 4(0) = 0 .

(g) "< (O) = 0

(h) iJ(0) =0

(D-5)
a'

With this set of values, Equation (D-3d) is satisfied

identically. The first and third relations of Equations

(D-3) respectively reduce to

(a) - roeo2 + - ---- + ---- = 0
m r 1 0

2  r20'

1 1
(b) -ThxOeO2 + mpE -------------

r 1 0
2  r20'

m1 m2
+ ------ - Ka(x - xs ) 0

, x 02..

(D-6)

Uwhere

"- m2
(a) r1 O = r 0 + ---- x

m

(b) r2 0 = r 0----- x

m
(D-7)

From the first relation of Equations (D-6), we get

)p 1 m I  M
0 C [---- --- ---------------)31/2 (D-8)

m r 0  r 1 O
z  r2 0

2

Now, substituting for 9O2 in the second relation of (D-6),
we can write

.~. ~ ~ . .-. * *~.- -*.* * .. ,--



T-260

m n I m2 1 1

- ----- ... (--. -)3 + mp E- ----- . ......-
mr 0  r 1 0

2  r2 0
-  r102 r- ,O.

mlm2

+ --- Ka(xO - xs ) = 0 (D-9)
X

For a given set of values of ro and physical parameters

(m 1 , m2 , xs , Ka, 6, and p), Equation (D-9) can be solved

for xO. Equation (D-8) gives the angular velocity (00).

In the present example, we choose

(a) r0 = 6574.33 km (200 km altitude)

(b) mI = m2

(c) m2 = 5.0 x 105 N-min 2 /km (1800 metric tons at the

earth's surface)

(d) E = 6.689496 x 1011 N/km 2 ( See Appendix C)

(e) xs = 1.0 km

(D-10)

From these, we obtain

(a) m = (mI + m2 ) = 1.0 x 106 N min 2 /km

(b) 7i = (mlm2 /m) = 2.5 x 105 N-min 2 /km

(D-1 1)

For a structure with a height, h = 4.899 x 10 - 3 km (see

Appendix C) and a width , zs = (0.05 xs) km, we get

(a) area of cross-section, Acs = 0.00024495 km 2

4- (b) stiffness, ka = (EAcs/Xs) = 163859204.52 N/km

(D-12)

We have,

i U
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(a) Universal Gravitational Constant,

6 = 8.64432 x 10-16 km 4 /N-min 4

(b) Acceleration due to gravity at the earth's surface,

g = 35.316 km/min
2

(c) Radius of the earth, R = 6374.33 km

(D- 13)""

Therefore,

p = gRz 1.434963 x 109 km 3 /min 2  (D-14)

When equation (D-9) is solved with these values, we get

x 0 = 1.0000230 km (D-15)

Equation (D-8) gives,

= 0.07106292 radian/min (D-16)

"U We have therefore the complete set of initial conditions and

values of all other constant parameters associated with the

equilibrium configuration.

p-

A,

e.b

a€'
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APPENDIX E

COMPUTER PROGRAMS

Computer Program I :

Listing of Sample Program to Compute Effects of
Differential Gravitational Forces

PROGRAM DGRVEFF (INPUT,OUTPUT,TAPE15,TAPE16,TAPE17) .a
C-- ------------------------------------------
C THIS PROGRAM COMPUTES R, THETA, Z AND PHI
C AND THEIR FIRST TIME DERIVATIVES
C FOR AN AXIALLY FLEXIBLE DUMBBELL STRUCTURE
C ORBITING IN SPACE WITH PLANAR MOTION
C UNDER EARTH,S GRAVITATIONAL FORCE ALONE.
C- --------------------------------------------
C SIMULTANEOUS NONLINEAR COUPLED DIFFERENTIAL
C EQUATIONS ARE SOLVED BY NUMERICAL ANALYSIS USING
C 5TH AND 6TH. ORDER RUNGE-KUTTA-VERNER METHOD
C (IMSL SUBROUTINE PACKAGE: DVERK)
C ------------------------------------------------------------- p
C

DIMENSION Y(8)
DIMENSION C(24),W(8,9)
REAL IGF

COMMON XM, XM1,XM2, XMBAR,XMU,UGC,XE, XA,XS, XKA,RM
EXTERNAL FCN1

C
WRITE (16,*) 'UNITS ARE IN NEWTON, KILOMETER AND'
WRITE (16,*) ' MINUTES ( ANGLE IN RADIAN)
WRITE (17,*) 'UNITS ARE IN NEWTON, KILOMETER AND'
WRITE (17,*) ' MINUTES ( ANGLE IN RADIAN)
READ (15,*) RM,XM2,GE,RE,UGC
READ (15,*) XE,XHT,XS
READ (15,*) RO,THO,XO,PHO
READ (15,*) RDOT,THDOT,XDOT,PHDOT
READ (15,*)TOL
XM -RM* XM2
XA-0.05 *XS* XHT "
XKA- (XE* XA)/XS
XMU-GE* (RE**2.)
XM= XM1+XM2
XMBAR= (XM1*XM2)/XM

C
WRITE (16,*)' Ml= ',XM1,' M2= ',XM2,' MI/M2= ',RM
WRITE (16,*)' ACC.GRAV.- ',GE,' RADIUS OF EARTH- ',RE
WRITE (16,*)' ELAST MOD= ',XE,' X-AREA OF LINK= ',XA
WRITE (16,*)' STIFFNESS= ',XKA,' REF LEGTHm ',XS

1-262 U
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WRITE (16,*)' UNIVERSAL GRAV. CONST.= ',UGC
WRITE (16,*)' GRAV. CONST.- ',XMU

WRITE (16,*)' TOTAL MASS- ',XM,' REDUCED MASS= ',XMBAR
WRITE (16,*)TOL
WRITE (17,*)' Ml= ',XM1,' M2= ',XM2,' M1/M2= 1,RM
WRITE (17,*)' ACC.GRAV.= ',GE,' RADIUS OF EARTH= ',RE
WRITE (17,*)' ELAST MOD= ',XE,' X-AREA OF LINK= 'XA
WRITE (17,*)' STIFFNESS= ',XKA,' REF LEGTH= ',XS
WRITE (17,*)' UNIVERSAL GRAV. CONST.= ',UGC
WRITE (17,*)' GRAy. CONST.= ',XMU
WRITE (17,*)' TOTAL MASS= 'XM,' REDUCED MASS= 'XMBAR
WRITE (17,*)TOL
NW= 8

* N= 8
T=0.0
Y(1)=RO

- Y(2)=THO
Y(3)=XO

L Y(4)=PHO
Y (5) =RDOT
Y(6)=THDOT
Y (7) =XDOT
Y(8) =PHDOT

S IND-1

AO=Y(1) **2
EO= (Y(3)**2/YJ4**2)
CCO=COS(Y(4))
DO=2.* (1./XM)*Y(1)*Y(3)*CCO
R1O= (AO+ (XM2**2) *BO+DO*y42) **O.5
R20=(AO+(XM1*2)*BO-DO*XM1)**O.5

X2 0= (XM1/ XM) * Y(3)
EO=(XM1*(Y(1)+X1O*CCO))/R1O**3
FO=(XM2*(Y(1)-X2O*CCO) )/R20**3
IGF=XMU* (EO+FO)
TGFO=XMU* (EO+FO)

a. DGFO=XMU* (EO-FO)
TGFRAT=TGFO/I GF
DGFRAT= DGFO/ IGF

RRAT=Y(1) IRO
WRITE (16,*) 'INITIAL TOTAL GRAy. FORCE (IGF)= ',IGF
WRITE (16,*)'***
WRITE (17,*) 'INITIAL TOTAL GRAy. FORCE (IGE) =',IGF
WRITE (17,*)'****'

C *

I WRITE (16,5)
5 FORMAT ('TIME1,12X,'RC',1OX,'THETA',3.2X,'X',12X,'PHI',

+ 11X,'THDOT',9X,'RC/RO',1OX,'X/XS',1OX,'DGF/IGF')
WRITE (16,1O)T, (Y(K) ,K=1,4) ,Y(6) ,RRAT,XRAT,DGFRAT
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10 FORMAT (9E14.8)
WRITE (17,13)
13 FORMAT ('TIME',12X,'RDOT',12X,'XDOT',12X,'PHDOT1,l 2 X,

+ 'TGF/IGF')
WRITE (17,16) TEND,Y(5),Y(7),Y(8),TGFRAT
16 FORMAT (5E14.8)
DO 2000 K=1,2000
TEND=FLOAT (K) *0.20
CALL DVERK(N,FCN1,T,Y,TEND,TOL,IND,C,NW,W,IER)
IF (IND.LT.0.OR.IER.GT.0) GO TO 30
A=Y(1)**2.
Ba (Y(3) **2/XM**2.)
CC=COS (Y (4) )
D=2.* (1./XM)*Y(1)*Y(3)*CC
R1= (A+ (XM2**2. )*B+D*XM2) **0 5
R2=SQRT (A+ (XM1**2. )*B-D*X41)
X1 = (XM2/ XM) *Y (3)
X2 =(XM1/XM) *Y (3)
E= (XM1* (Y(1)+X1*CC) )/R1**3.

* Fu (XM2* (Y(1)-X2*CC) )/R2**3.
TGF=XMU*(E+F)
DGF=XMU* (E-F)
TGFRAT=TGF/IGF
DGFRAT= DGF/ IGF
RRAT=Y(1) /RO
XRAT Y (3) / XS

* WRITE (16,20)TEND,(Y(L),L=1,4),Y(6),RRAT,XRAT,DGFRAT
20 FORMAT (9E14.8)
WRITE (17,25) TEND,Y(5),Y(7),Y(8),TGFRAT
25 FORMAT (5E14.8)
50 CONTINUE
STOP
30 CONTINUE
PRINT *,'IER =',IER
STOP
END

C -- - - - - - - - - - - - - - - - - - - - - -
C -- SUBROUTINE * FCN1 -----
C -- - - - - - - - - - - - - - - - - - - - - - - -

SUBROUTINE FCN1 (N,T,Y,YD)
DIMENSION Y(N) ,YD(N)

COMMON XM,XM1,XM2,XMBAR,XMU,UGC,XE,XA,XS,XKA,RM-
YD (1)-=Y(5)
YD(2)=Y(6) C
YD (3)mY (7)
YD (4)mY (8)
A=Y(1) **2.
B= (Y(3) **2./XM**2.)
CC-COS (Y (4) )
D=2.* (1./XM) *Y(1) *Y(3) *CC
R1= (A+ (XM2**2. )*B+D*XM2) **0.5

.*~~c el~-
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R2=SQRT (A+ (XM1** 2. )*B-D*XMI)
Xl= (XM2/XM) *Y(3)
X2 - (XM1/ XM) * Y(3)
DUDX- XKA* (Y (3) XS)
E=(XM1*(Y(1)+X1*CC) )/R1**3.
F=(XM2*(Y(1)-X2*CC) )/R2**3.
YD(5)= (Y(1) *(Y(6) )**2.) -(XMrJ/XM) *(E+F)
G=SIN(Y(4))
EH=XMU* ( (./R2**3. ) -(./R1**3.) )*G
YD(6)-(-2.)*(Y(5)/Y(l))*Y(6)+(XMBAR/XM)*BH*(Y(3)/Y(1))
BI=Y(6)+Y(8)
BJ= (X1+Y(1)*CC)/(R1**3.)

Al BK=(Y(1)*CC-X2)/(R2** 3.
GRV= (UGC*XM1*XM2) /(Y(3) **2.)
YD(7)=Y(3)*(BI**2.)-XMU*(BJ-BK)-(DUDX/XMBAR)-(GRV/XMBAR)
BL=( (XMBAR/XM)* (Y(3)/Y(1)) )+(Y(1)/Y(3))

-. ~YD(8)=2.* (Y(5)/Y(1) ) *'f() 2.* (Y(7)/Y(3) )*BI(BL*BH)
ci RETURN

END
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Sample Input Data

Tape 15

PRINT, TAPE15

.000000000,5.*OOOE+05,3.5316Ef I 6.37433Ef3,8.64432-E-16
6.6G949A6E+11 ,899E-3, 1.0

0.0,7. 106292 0411420E-2,0.0v0.0
:L.OE-06

READY.

Sample Run Session_

FORTRAN

FINDLIB' IfSL.
READY&

-XYvLIVRARYvISt
READY.
OLD vGEFF
KEAUTo

GETP TAPE15
READY.

- KUM~

STOP

SRU 2.171 UNTS.

RUN -cmpsLETEm.

z.B
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IC WaJw~.hJww'w'WWWWWWWWWWWwwww
0A vi 4 Z 0 N h, Ir I Co. C, rq vi o. 0 IM # P1Noo m o 0 PMK- ; P
ri r. F: r. r. N ; r. F. F; N. i F. m1 eI NA d Ni MM in v. r, CA P1 N N CA
!- !o a 00a a e c !0 00 !e eec 02 00 00 00..

c. F. F, ci iX in to- v i iv we vi An ey v 5. P" A i co o- F4 wi co, miv vw
In MI M F AP "11 1 mI II li N f A A A f"i NI CA in
00 00 00 00 f00 @0 r00 @0 00 0 00 e.00ie yr aN aIiC Ar 4(4C I ANC A

-----------------------------------------------------------

cvocec 00000 o @0 IQ0 0000 0 0c

--- 22-2

w e IW, W WU1.11.WU.W W, WWW W, WW~ W W
o~ococo 0 000co, VO0WO OWi0ou@ o

oooeooocooooo~oeoO 0 0 00 0 0

r a000

0 0000000 00 00 0000000 @000 00600 00 0
C CI I 11 11 CII . ..... 1 1111 11 1 i

Ir C e N N N N NNN NNC C NNN knN N NN

0 C 00erAV 00 00,3C' IC vi 0 11 0m 00 0 0 000K0 00 0
P. oi l '1 C I I I111 CC Cell II 11 1 1 1I

ol00 C. el CA 0. P140- ri N C; IN N N N 0 NMN N CA 4 NO CA N C

01 000 000000 0000 00000090000 00 000000
r.00 00 00---0 0 00 0 coca** 9* *

W3eMW:IA&0IJWWWaWW 2hIWWW WW W WWW
m~C~0PP O C P CO M 0 N 0O L~

m1 ac ------- 000008000080000000000000

0aP --- 00 .000M.0 20000000000

AZ 0 e " C aWOrz s r Z K I M W kJ W I A J W J W W

P-,111 r-.Nmrc.,I011P4-P4 q O V O
ON 2 CcIW CS 1.4 NM cr. 0 N V P1 hip o N 4 0 N # 0 11, Nm P11
4 t11 w1 ri CCz C V 0 es, 0 0M .~In 0. -N v N

Up 1611 - vI A.-C r4C 0W M jVP - w I CN N 0 v-w--w---v----- 41'-1-,N .1 w v w 41, v vv -

%0W *UUococcoccoccocoO00000 0000 0 0000

cc 00O 0 oe00000000000000000 00000 00 00
ZOW#Y. ceccoccPP1MMP1P mMMMMMM IMMiMMMM

-0 M 0a2 P10 UP ~ ~ 111M1MMM1MMMC11M
0 ~~ c olece0 * u#~oV V V qVwu ~ V V q

%0 viCcl* wS NNNVN N N NN N N N N N v'o,;NN

9"W . ~IC 'C 'CC4'C 44 'C 44 44 44Uon4

0 c 0 p £ - -O C 0 C0 000 0 0000000000 -

.- i..eCzo I ocooz0cc0c000000000*8008 8 000Cc0
AM At . 5 4 000000000c

.c --
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Sample Output Data (continued ... )

Tape 17

94

* - UNITS ARE IN NEUTOn. KILOIETER AND
"INUTES ( ANOI.E IN RADIAN)

Ml- 500000. 142- 500000. 141/12- 1.
_ACC.GRAY.wE35.31S-RADKUV*OF EARTI1136374.33 --

ELAST MOD'- 6.699496E+l1 X-AREA OF LINK- .00024495
srIFFNESS- 163959204.52 REF LEGTH- 1.
UNIVERSAL ORAVi CONST;w 8;64432E~1 - -

GRAY. CONST.- 1.434962641423E#9
TOTAL. MASS- 1000000. REDUCED MASS- 250000.

INITIAL TOTAL GRAV. FORCE (IGF) m33199963.21351

TIME - -- RVOT- xr'nr P11POT -TOF/TGF

.OOOOOOOOE*00 .OOOOOOOOE*00 .OOOOOOOOEMO .OOOOOOOOEtO0 .10000000Et0I

.20000000E*0O-.54778725E-12-.*29164722E-05-.85834259E-08 , 10000000E+01
- .40000000Et00-T104742alE-1 I-.25t83446E-05-e27593335E-0? , IOOOOOOOE4OI
.60000000E100-.15436427E-11 .7A772333E-06-.3301759&E-07 .1OOOOO0oE+01
.OOOOOOOOEf00-.21 1955261-1 £ .35004069E-0S-.20358619E-07 * lOOOOOOOEtOl
;lOOOOOOOE+0t-*;26697000E-1 1 ;2224928SE-03 i31995233E-09 ; ZOOOOO0E 101 -

* 12000000E*01-.32375699E-1 1-. 17997042E-05 .3538489SE-0U * IOOOOOOOEf01
.14000000E*01-.365594081-tl-.410412961-05-. .S9l331E-07 * 10000000Et0I

4-IAOOOOOE#Or4191213-1-7941613E-0-;3243291-07 ;.IOOOOOOEOE$1
4.18OOOOOOE+01-.47993751E-11 .3002'6114E-05-.3597893.E-07 .10000000E+01

.20000000E+01-#53344691E-11 *46441393E-05-.8824168SE-08 .30000000EM0
&__22000000E1O1-;!f7903270E-11 i9S96567SE-0&-412349Y68E-07 i10000000E4OI
.24000000E*01-.64105585E-11-.43134061E-05 .175t1762E-00 .10000000E+01
.26000000E*01-.69666517E-11-.49043123E-05-304179S4E-07 .10000000E+01
*2900000E*0I--75979221E-1 1--315057791-06-4000300S1-07-; 10000000EtOI
.30000000E+01-.607692&E-11 * 566249221-05- .27733364E-07 .10000000E*01
.32000000E+01-.66899905E-1 1 * 4431337H1-05 *87725859E-06 9 10000000E+01

;340000E*O-;fl4S47E-I-~214915E05 17995652E07 & 10000000E*01-
.36000000E*01-.9870Y260E-11-.63745439E-05-. 117737931-07 * 100000001*01
.390000001+01-. 10391042E-10-.32650600(-05-.46497125E-07 * LOOOOOOOE*01
00O00OOEfUr--6-0YU57uEV1O39944Er-0SW. 44437673ES07-o10000000E+01

.420000001*01-. 11301543E-10 .66203902E-05-*62973371E-09 # 10000000E+01
-440000001401-. 119420161-10 .15225344E-05 .238012061-07 .10000000OE+01

460OO00*01125457E1O;567070(~S 971 17003E-0 10000000E+01
.400000001O-. 13134956E-10-.620644S3E-05-.32761 1161-07 * 100000001*01
.50000000(401-. 136609271-10 .60804744E-06-.53258699E-07 .10000000E+01

* 20000#1 .10000000189171-0-2&4149-7&IOOOO+01- -

.54000000(*01-.14755331E-10 .50750364E-05 # 16910036E-07 *10000000E+01-

.56000000E*01-. 15204499E-10-.2941 1631-05 .25752423E-07 * 10000000E*0I

.S00000O01-. 1746970E-10-. 75991194E-05-. 106363361-07 II100000001*01

.600000001*01-. 16300311E-10-.33919317E-05-.50322665E-07 * 10000000Et01

.AOOOOOOF+01t-. 169293N2E-10 .495669301-05-.*449207091-07 * 100000001*01

. . . . . . . ..
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Computer Program II

Listing of Sample Program to Compute Combined Effects of
Thermal and Differential Gravitational Forces

PROGRAM THRMEFF (INPUT,OUTPUT,TAPE4O,TAPE41,TAPE42)
C - - - - - - - - - - - - - - - - - - - - -
C THIS PROGRAM COMPUTES R, THETA, Z AND PHI
C AND THEIR FIRST TIME DERIVATIVES
C FOR AN AXIALLY FLEXIBLE DUMBBELL STRUCTURE
C ORBITING IN SPACE WITH PLANAR MOTION
C UNDER DIFF. GRAVITATIONAL FORCE AND
C TEMPERATURE EFFECTS.
C-----------------------------------------------
C **

C SIMULTANEOUS NONLINEAR COUPLED DIFFERENTIAL
C EQUATIONS ARE SOLVED BY NUMERICAL ANALYSIS USING S

C 5TH AND 6TH. ORDER RUNGE-KUTTA-VERNER METHOD
C (IMSL SUBROUTINE PACKAGE: DVERK)
C ---------------------------------------------------
C

DIMENSION Y(9)
DIMENSION C(24),W(9,9)

REAL IPRM
INTEGER NROT
COMMON XM,XM1,XM2, XMBAR,XMU,UGC,XE,XA,XS,XKA,RM,

p+ RE,TMPS,NDSOL,NDERT,NALBD,GS,ALBD,
+ ABSOL,ABERT,ABALB,DERAD,EPSL,SIGMA,
+ XASDE,XASRF,XMASS,SPHT,
+ PI, IPRM,TPROP,NDELTA,NCOUNT,RDIFF1

EXTERNAL FCN1
C

PRINT *,'1ENTER CODE FOR DIRECT SOLAR, DIRECT EARTH,'
PRINT *#'AND ALBEDO: 1=YES, 2=NO'
READ * ,NDSOL,NDERT,NALBD
IF (NDSOL .EQ. 1 .AND. NDERT .NE. 1 .AND. NALBD

+ .NE. 1)THEN
WRITE (41,*)#**DIRECT SOLAR EFFECT ONLY ~
WRITE (42,*) '**DIRECT SOLAR EFFECT ONLY ~
ELSE
END IF
IF (NDSOL .NE. 1 SAND. NDERT .EQ. 1 .AND. NALBD

+ .NE. 1) THEN P

WRT 4,)'*IETERT AITO FETOL

WRITE (41,*) 0**DIRECT EARTH RADIATION EFFECT ONLY *

ELSE
END IF
IF (NDSOL .NE. 1 .AND. NDERT .NE. 1 .AND. NALBD

N:~5
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+ .EQ. 1) THEN
WRITE (41,*) '**ALBEDO EFFECT ONLY**'
WRITE (42,*) '**ALBEDO EFFECT ONLY**'
ELSE
END IF
IF (NDSOL .EQ. 1 .AND. NDERT .EQ. 1 .AND. NALBD

+ .EQ. 1) THEN
WRITE (41,*) '**TOTAL THERMAL EFFECTS**'
WRITE (42,*) '**TOTAL THERMAL EFFECTS**'

ELSE
END IF
IF (NDSOL .EQ. 1 .AND. NDERT .NE. 1 .AND. NALBD

+ .EQ. 1) THEN
WRITE (41,*) '***DIRECT SOLAR AND ALBEDO HEATING"'
WRITE (42,*) '**DIRECT SOLAR AND ALBEDO HEATING"'

ELSE
END IF
PI3.141592

C

WRITE (41,*) 'UNITS ARE IN NEWTON, WATT, KILOMETER AND'
WRITE (41,*) 'MINUTES (ANGLE IN RADIAN, TEMP. IN KELVIN)'

4-

WRITE (42,*) 'UNITS ARE IN NEWTON, WATT, KILOMETER AND'
WRITE (42,*)'MINUTES (ANGLE IN RADIAN, TEMP. IN KELVIN)'

READ (40,*) RM,XM2,GE,RE,UGC
READ (40,*) XE,XHT,XS,TMPS,TPROP
READ (40,*) RO,THO,XO,PHO,TMPO
READ (40,*) RDOT,THDOT,XDOT,PHDOT
READ (40,*)XMASS,SPHT
READ (40, *) GS,ALBD
READ (40,*)ABSOL,ABERT,ABALB,DERAD .
READ (40,*)EPSL,SIGMA
READ (40,*) XASDE,XASRF
READ (40,*) IPRM,NDELTA
READ (40,*)TOL
XM1= RM* XM2
XA-0.05* XS* XHTXKA- (XE* XA) /XS '
XMU-GE* (RE**2.)
XM- XM1+ XM2
XMBAR- (XMI*1XM2)/XM .

C
WRITE (41,*)' Ml- ',XM1,' M2- ',XM2,' MI1/M2- ',RM
WRITE (41,*)' ACC.GRAV.- ',GE,' RADIUS OF EARTH- ',RE
WRITE (41,*)' ELAST MOD- ',XE,' X-AREA OF LINK- ',XA
WRITE (41,*)' STIFFNESS- ',XKA,' REF LENGTH= ',XS
WRITE (41,*)' UNIVERSAL GRAV. CONST.= ',UGC
WRITE (41,*)'GRAV. CONST.- ',XMU,'REF. TEMP- ',TMPS
WRITE (41,*)' TOTAL MASS= ',XM,' REDUCED MASS- ',XMBAR
WRITE (41,*) ***'
WRITE (41,*)'REF. TEMP.- ',TMPS
WRITE (41,*) 'SOLAR RADIATION CONSTANT- ',GS

i
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WRITE (41,*) 'AVERAGE ALBEDO= ',ALBD
WRITE (41,*) 'AVE. EARTH EMITTED RADIATION= ',DERAD
WRITE (41,*) 'ABSORPTANCE TO DIRECT SOLAR RADIATION= ',

+ ABSOL
WRITE (41,*) 'ABSORPTANCE TO ALBEDO RADIATION = ',ABALB
WRITE (41,*) 'ABSORPTANCE TO DIRECT EARTH RADIATION= ',

+ ABERT

WRITE (41,*) 'EMITTANCE TO THERMAL RADIATION= ',EPSL
WRITE (41,*) 'STEPHAN-BOLTZMANN CONSTANT= ',SIGMA
WRITE (41,*) '***'

WRITE (41,*) 'SPECIFIC HEAT OF LINK-MATERIAL(AL)= ',SPHT
WRITE (41,*) 'THERMAL EXPANSION PROPERTY OF LINK-MATERIAL=

+ , TPROP
WRITE (41,*) 'TOTAL MASS OF LINK-STRUCTRE= ',XMASS
WRITE (41,*) 'TOTAL AREA OF ONE SIDE OF LINK EFFECTIVE
WRITE (41,*) 1 FOR THERMAL ABSORPTANCE= ',XASDE
WRITE (41,*) 'TOTAL SURFACE AREA EFFECTIVE FOR'
WRITE (41,*) THERMAL EMITTANCE= ',XASRF
WRITE (41,*) ***'

WRITE (41,*) 'INCLINATION OF SUN FROM NORMAL TO'
-'S WRITE (41,*) ORBIT PLANE- ',IPRM,' (RAD)'

WRITE (41,*)TOL
WRITE (41,*) ****'
WRITE (42,*)' M= ',XM1,' M2= ',XM2,' MI/M2= ',RM
WRITE (42,*)' ACC.GRAV.= ',GE,' RADIUS OF EARTH= ',RE
WRITE (42,*)' ELAST MOD= ',XE,' X-AREA OF LINK= ',XA
WRITE (42,*)' STIFFNESS= ',XKA,' REF LENGTH= ',XS
WRITE (42,*)' UNIVERSAL GRAV. CONST.= ',UGC
WRITE (42,*)'GRAV. CONST.= ',XMU,'REF. TEMP= ',TMPS
WRITE (42,*)' TOTAL MASS= ',XM,' REDUCED MASS= ',XMBAR
WRITE (42,*)'***'
WRITE (42,*) 'REF. TEMP.- ',TMPS
WRITE (42,*) 'SOLAR RADIATION CONSTANT= ',GS 1
WRITE (42,*) 'AVERAGE ALBEDO= ',ALBD
WRITE (42,*) 'AVE. EARTH EMITTED RADIATION- ',DERAD
WRITE (42,*) 'ABSORPTANCE TO DIRECT SOLAR RADIATION= '"

+ ABSOL
WRITE (42,*) 'ABSORPTANCE TO ALBEDO RADIATION = ',ABALB
WRITE (42,*) 'ABSORPTANCE TO DIRECT EARTH RADIATION=

+ ABERT
WRITE (42,*) 'EMITTANCE TO THERMAL RADIATION= ',EPSL
WRITE (42,*) 'STEPHAN-BOLTZMANN CONSTANT- ',SIGMA
WRITE (42,*) @***'
WRITE (42,*) 'SPECIFIC HEAT OF LINK-MATERIAL(AL)= ',SPHT
WRITE (42,*) 'THERMAL EXPANSION PROPERTY OF LINK-MATERIAL=

+ ,TPROP
WRITE (42,*) 'TOTAL MASS OF LINK-STRUCTRE- ',XMASS
WRITE (42,*) 'TOTAL AREA OF ONE SIDE OF LINK EFFECTIVE
WRITE (42,*) ' FOR THERMAL ABSORPTANCE- ',XASDE
WRITE (42,*) 'TOTAL SURFACE AREA EFFECTIVE FOR'
WRITE (42,*) ' THERMAL EMITTANCE- ',XASRF

p..

-.. . -* .

~p~h ~ 5**. . -. ~ -' A -. * .-. .. * .~ ~ '-
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WRITE (42,*) *Ib

WRITE (42,*) 'INCLINATION OF SUN FROM NORMAL TON
WRITE (42,*) ' ORBIT PLANE- ',IPRM,' (RAD)'
WRITE (42,*)TOL
WRITE (42,*)I***'
NW= 9
N= 9
T=0.0
Y(1)=RO
Y(2)UTHO
Y(3)=XO
Y(4) -PHO 

-

Y (5) =RDOT
Y(6)=THDOT
Y(7)=XDOT
Y(8)=PHDOT
Y(9)-TMPO
IND=1

C
RCRAT=Y(1)/RO
XRAT- Y (3)!/ XS
WRITE (41,10)

10 FORMAT ('TIME',15X,'RC',10X,'THETA',9X,'X',13X,'PHI',
+ 11X,'THDOT',9X,'RC/RO',1OX,'X/XS',9X,'TEMP')

WRITE (42,15)
15 FORMAT ('TIME',12X,'RDOT',1OX,'XDOT1,10X,'PHDOT',24X,

+ 'RDIFF')
WRITE (41,20)T,(Y(K),K=1,4),Y(6),RCRAT,XRAT,Y(9)
20 FORMAT (9E14.8)
WRITE (42,25)T,Y(5),Y(7)-,Y(8)
25 FORMAT (4E14.8)
NCOUNT=0

TEND=0.0
DTEND=0.2

DO 50 K-1,4000
TEND=TEND+ DTEND
CALL DVERK(NFCN1,T,Y,TEND,TOL, IND,CNW,W, IER)
IF (IND.LT.0.OR.IER.GT.0) GO TO 30
IF (Y(2) .LE. (2.0*Pl)) NORB-0
IF (Y(2) .GE. (2.0*PI)) NORB-i

4IF (Y(2) .GE. (4.0*PI)) NORB=2-
IF (Y(2) .GE. (6.0*PI)) NORB-3
IF (Y(2) .GE. (S.0*PI)) NORB-4
THETA1=(1.0+4.0*NORB)*PI/2.0
THETA2=THETA1+PI
IF (Y(2) .GT. THETAl .AND. Y(2) .LT.THETA2) THEN
CALL SHADOW (N,T,Y,TEND,RDIFF)
DTEND=0 *

ELSE
NCOUNT=0
DTEND= 0.2
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P END IF
RCRAT=Y(1)/RO
XRAT-Y(3)/XS
WRITE (41,40)TEND,(Y(L),L=1,4),Y(6),RCRAT,XRAT,Y(9)
40 FORMAT (9E14.8)
IF (Y(2) .GT. THETAl .AND. Y(2) .LT.THETA2) THEN

WRITE (42,45)TEND,Y(5),Y(7),Y(8),RDIFF
45 FORMAT (4E14.8,14X,E14.8)
ELSE

WRITE (42,48)TEND,Y(5),Y(7),Y(8)
48 FORMAT (4E14.8)
END IF
50 CONTINUE
STOP
30 CONTINUE
PRINT *,IIER =',IER
STOP
END

C -- SUBROUTINES ----

C
SUBROUTINE FCN1 (N,T,Y,YD)
DIMENSION Y(N) ,YD(N)

SCOMMON MX1X2XBRXUUCXAXKR,
+ RETMPS,NDSOL,NDERT,NALBD,GS,ALBD,
+ ABSOL,ABERT,ABALB ,DERAD,EPSL,SIGMA,
+ XASDE,XASRF,XMASS,SPHT,
+ PI,IPRM,TPROP,NDELTANCOUNT,RDIFF1

YD(1)=Y(5)
YD (2).Y (6)
YD (3)- Y(7)
YD(4)-Y(8)
A-Y(1)**2.
B- (Y (3) ** 2./Y4**2.
CC=COS (Y(4))

Ri- (A+ (XM2**2. )*B+D*XM2) **0. 5
R2-SQRT(A+ (X141**2. )*B-D*XMJ1)

gym. =1(X142/ XM) *Y (3)
X2- (XM1/XM) * Y(3)
TZ4PEF=XA*TPROP* (Y(9) -TMPS)
DUD XXKA* (Y(3) -XS) -TMPEF
E=(XM1*(Y(1)+X1*CC))/R1**3.
F- (XM2* (Y (1) X2*CC) )/R2**3.
YD(5)- (Y(1) *(Y(6) )**2 ) - (XMU/XM) *(E+F)
G=SIN(Y(4))
BH=XMU* ( (./R2**3. ) -(./R1**3.) )*G

-: BI-Y(6)+Y(8)
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BJ= (X1+Y(1)*CC)/(R1**3.)
BK= (Y(1) *CC-X2)/(R2**3.)
GRV= (UGC*XM1*XM2)/(Y(3) **2.)
YD(7)-Y(3)*(BI**2.)-XMUt*(BJ-BK)-(DUDX/XMBAR)-(GRV/XMBAR)
BL=((XMBAR/XM)*(Y(3)/Y(1)))+(Y(1)/Y(3))

CALL HEAT (N,T,Y,QIN,QOUT) 7
YD (9) =(QIN-QOUT) /(XM4ASS*SPHT)
RETURN

END

C

C
SUBROUTINE SHADOW (N,T,Y,TEND,RDIFF)
DIMENSION Y(N)
REAL IPRM
COM4MON XMXM1, XM2, XMBAR, XMU,UGC, XE,XA,XS, XKA,RM,

+ RE,TMPS,NDSOL,NDERT,NALBD,GS,ALBD,
+ ABSOL,ABERT,ABALB,DERAD,EPSL,SIGMA,
+ XASDE, XASRF, XMASS, SPHT,
+ PI, IPRM,TPROP,NDELTA,NCOUNT,RDIFF1

CSQ= (COS (Y(2) ) )**2
SSQ= (SIN (IPRM) ) *2
RSH= RE/SORT (1-CSO*SSO)
RDIFF=RSH-Y (1)
IF MNOUNT .EQ. 0) GO TO 300
IF (RDIFF1 .GT. 0 .AND. RDIFF .LT. 0 .OR.

+ RDIFF1 .LT. 0 .AND. RDIFF .GT. 0) THEN
NDELTA-ABS (NDELTA-1)

PRINT *,'SHADOW ENTRY/EXIT AT ',Y(2),' (RAD)',' TIME= '

+ TEND
WRITE (42,*) 'SHADOW ENTRY/EXIT AT ',Y(2),' (RAD),

+ ' TIME- ',TEND
ELSE
NDELTA-NDELTA

END IF
300 RDIFF1-RDIFF
NCOUNTmNCOUNT+1
RETURN

END
C

. C- - - - -- - - -

'p.C SUBROUTINE TO DETERMINE HEAT IN AND HEAT OUT
C - - - - - - - - - - - - - - - - - - - - - - - -
C

SUBROUTINE HEAT (N,T,Y,QIN,QOUT)
DIMENSION Y(N)
REAL IPRM

INTEGER WROT



COMMON XM, XMl, XM2, XMBAR, XMU, UGCXE, XA, XS, XKA, RM,
+ RE,TMPS,NDSOL,NDERT,NALBD,GS ,ALBD,
+ ABSOL,ABERT,ABALB,DERAD,EPSL,SIGMA,
+ XASDE,XASRF,XMASS,SPHT,

IN+ PI,IPRM,TPROP,NDELTA,NCOUNT,RDIFF1
C

p. C HEAT INPUT
C
C
C DIRECT SOLAR RADIATION HEAT INPUT (QDSOL):

C F .NSLEQ. 1) THEN

CBTS=SIN(IPRM)*SIN(Y(2)+Y4NEW)
QDSOL=NDELTA*ABSOL*GS*XASDE*ABS (CBTS)
ELSE
QDSOL=0. 0
END IF

IF (4NEWLT.0.0) Y4NEW =-Y4NEW

NROT=Y4NEW/ (2*PI)

IF (Y4NEW .GT. PI) Y4NEW=Y4NEW-PI
GMMA=ASIN(RE/Y(1))
BTR=ABS (Y4NEW-PI/2. 0)
XX= (PI/2. 0) - GMMA
IF (BTR .GE. 0.0 .AND. BTR *LE. XX) THEN
FE1- (S IN (GMMA) *2) *(COS (BTR))

P FE2-0.0
ELSE
Fl=l. 0/ (TAN (GMMA) *TAN (BTR))
F2=COS (GMMA) IS IN (BTR)
F3=SQRT((SIN(GMMA))**2-(COS(BTR))**2)
PTl= (SIN (GMMA) **2) *CO5(BTR) *ACOS (-Fl)
PT2=ACOS (F2) -COS (GMMA) *F3

* FEl= (PTl+PT2) /P I
BTR-PI-BTR
Fl- 1.O/ (TAN (GMMA) *TAN (BTR))
F2-COS (GMZ4A) IS IN (BTR)
F3-SQRT ((SIN (GMMA) )**2-(COS (BTR) )**2)
PTl= (SIN (GMMA) **2) *CO5(BTR) *ACOS (-Fl)
PT2=ACOS (F2) -COS (GMMA) *F3
FE2= (PTl+PT2) /PI
END IF

C
j ASDEl=XASDE

ASDE2= XASDE
C
C DIRECT EARTH RADIATION HEAT INPUT (QDERT):



c *DE~ D1-276

IF (NDERT .EQ. 1) THEN

ELSE

Q ERTH'O.0 D RDATO HEAT INPUT (QALBD):

ABALB 1=ABALB
ABALB 2=ABALB
CBETA=SIN (IPRM) *CQ5(Y(2))
IF (CEETA .LT. 0.0) CBETA=0.O
QALBD= (NDELTA) *(ABALB1*ASDE1*FE1+ABALE2*ASDE2*

0+ FE2) *ALBPAD*CBETA
ELSE
QALE D= 0.0
END IF

C *

C TOTAL HEAT INPUT (QIN):
c *

QIN=QDSOL + QDERT +QALBD

C ** HEAT OUTPUT

QOUT=EPSL*SIGMA*XASRF*Y (9) **4
RETURN
END
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U Sample Input Data

Tape 40

1.000000,5.OOOE+05,3.5316E+1 u6.37433E+3Bg.64432-E-16

6.5743300000E+3,O.OOO, 1 .OOO23OPO.OOOOOOO,29O.O0O
0.0, 8. 830000000E-02 u0#*0v0 *00

1353.OE+06vO.3
..p l#00i1.0Op1.0Ov237.0E+06

0. 75107B4E-04, 1 *7503756BE-03
1..970796,l _ _ _ __ _ - --- - - -

Sample Run Session

S FINDLIBFIMSL
-REA DY.
XpLIBRARY'IMSL
READY*
ULDPE ILI

READY*
GETPTAPE40
-ROlTv.
RUN

ENTER CODE FOR DIRECT SOLARY DIRECT EARrH,
AND ALBEDO: I-YESP 2-NO

- TOP -

-RtJ-70t- uNS.

RUN COMPLETE,



- 2 7&

*coo a -0 a*~1

0 ej V ., a . . W W 9

60 ""009 KNf ' -

~~0ea~t' W 4v~~~

-8 -*1-

0000 00 00

008 Mm"ri

.,.~~~~ 00 o 4 We el" ."ao ;.*.-9 a ... 0.

0 MS 4p W K 0 4H @..g ,. K K N N
*6 i I I **f **.-.

K 0. M 9UN V

a a

" " ' a "
I hi i hn

-. N in .C fL

W -.%'s N -O.r P", ~op"

,11, r4. ,. Pb'. W - s4

"--C WWM W -61 1--V PeeP m.

A0 1, I N in V In In In

I.. g 000

PS. .. I .. m I.
-- a v I. * O cc z

C r@ 0.CC0 0.0

Or, .lu C I Z

M iN!!1 M m1!!

MA -o -i ... ... . .

0 c C8C~ s: 
0
g 0UC 00

! i!) if W6U a

CI - eeze

3 tau r r - 0 k"- M... .....
SC a "I .,* p8 - q . N . r , P N

le I S .2il ib h*4 f -o, e c--- .zz me -- w; @lOtr f sOr'e4

iaP. rl ll -I OC ** **... ~ m i

6-w -rn .. 0-

IfI

t, : <- < ,= .= ,> :o,- :< .<°-' - .. - " -..... .... ...

_11 i -' -II ri~ zi . = i. . .. o I ..



1- 279

Sample Output Data (continued...)

Tape 42

t.TOTALRTHERMALEFFfCTS**UITS A E IN NEUTON* WATTP RtLnMETFR AMP
bIltOtWES (ANflLE IN RAfilAN. tF"P. IN kfLVIN)
MI. 500000. M2- 500000. M I/N?- I.

-ACC.flRAV.- 35.316 RADIUS OF EARrH- 6374.33 '

A.TLAST RfV6Y49Af*I1 X-ARFA OF LINK* .00024495 P

STIFFNESS- 1836'592!04.52 REF LENOTH, I.
UNIVERSAL GRAY. CONS?.- 9.444J2E-lA

GRAV. CnteST.w t.434962641423Ef9REF. TEMP'sw 290e
TOTAL MASS- 1000000. RFEXICED MASS- 250000.

REF; TEMP%YO 29o -----

SOLAR RADIATION CONSTANT- t.353E*9
AVERAGE ASEtlO .3
AVE. EARTH EMITED RADTATTON4 237000000.
ADpflRFTANCE ro DIRECT SOLAR RADIATIN- t.
AI4smIrPANCE TO AL.TEPO R~ADIATION - 1.
APSORPTANIE TO' IIIREIrT FART11 PAPTITTOI 1;
EtHITANEF TO THERMAL RADIATION- 1.
STEPHAN-PULT7MANN CIINSTANT- .0567

Sr*FrIFtc HAT (If Lt"K-MATERALAL)- 52.75364
fISFRPIAL EYPAMSION PRnpvRTy OF LINK-MATERAL- 24349760.
TOTAL MASS-OF 1f.SRct-5!;S-- -

TOTAL AREA OF ONE SIDE Of LINK EFFECTIVE
FOR TIOERMAL APSORPTANCE- .00087519784

TOTAL SURACE AREA EFFECTIVE FOR--
THERMAL EMITTANCE- .00t75037568

INCLIATt"urSIM RW~ PSRRUTU -

ORUIT PLANE- 1.570"46 CRAS)
1.K-6 .

TIME poor EDGY P9400 RDIFF

400000001400 .000001E#00- 1326673201-03 .0000040

-- S0000000E@@-- ;?49t90402ff. ;967SFa236E-0*- ;I63936SVE103- ---

.11240000E#03 .603652271*02 .36615371E-04 UM993901E-01 -.91935509E+02
tI 2S0000t9OI. 02243014@2--5046203Y104 ,-370510-0---- ----- - ~;30415650E402 -.--

W0AS0U ENRY.0EE!1T AT 2.051930S79427 fRAD) TINE- 112.599999999
-112600001003 .600736619+02-.940811619-04 .3"0163969-01 .21219&70E402
ttI200@0EC#0TJ;3t790E42.312t!42E'O4 ;37M24449-01 .73192539E+02
.11290000E+03 .59762327+02-.1425919-03 .370374429-01 .12546307E+03

%p..

17-
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Computer Program III

Listing of Sample Program to Compute Euilibrium
Temperature

PROGRAM EQTMP (INPUT,OUTPUT,TAPE32,TAPE33)

C THIS PROGRAM COMPUTES EQUILIBRIUM TEMPERATURE (TMPEQ).

REAL IPRM
PRINT *,IENTER CODE FOR DIRECT SOLAR, DIRECT EARTH,'
PRINT *,'AND ALBEDO: 1-YES, 2-NO'
READ *,NDSOL,NDERTNALBD
PI-3.141592
IPRM-PI/2.0
READ (32,*)RO,THOPHO
READ (32,*) RE, GS,ALBD
READ (32,*)ABSOL,ABERT1,ABALB1,DERAD
READ (32,*)ABERT2,ABALB2
READ (32,*)EPSLI,EPSL2,SIGMA
READ (32,*)DELTA
READ (32,*) XASDEI,XASDE2,XASRF

C
C DIRECT SOLAR RADIATION HEAT INPUT (QDSOL):
C

IF (NDSOL .EQ. 1) THEN
CBTSuSIN(IPRM) *SIN(THO+PHO)
QDSOL-DELTA*ABSOL*GS*XASDE1*ABS (CBTS)

SOELSE
QDSOL-O.O
END IF
PRINT *,'DIR. SOL.- ',QDSOL

C
C VIEW FACTORS:

IF (PRO .LT. 0.0) PHO--PHO
IF (PHO .GT. 2.0*PI) PHO-PHO-2.0*PI
IF (PRO .GT. PI) PHO-PHO-PI
GMMA-ASIN (RE/RO)
BTR=ABS (PHO-PI/2. 0)
XX=(PI/2.0) - GMMA
IF (BTR .GE. 0.0 .AND. BTR .LE. XX) THEN
FEl- (SIN (GMMA) **2) * (COS (BTR))

4FE2-O.O
PRINT *lUFE1- ,FE1,'FE2- ',FE2
ELSE
F1-1.0/(TAN(GMMA)*TAN(BTR))
F2-COS (GMMA)/SIN (BTR)
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F3=SQRT ((SIN (GMMA) )**2-(COS (BTR) )**2)
PTl- (SIN(GMMA) **2) *CQ5(BTR) 'ACOS (-Fl)
PT2=ACOS (F2) -COS (GMMA) *F3
FEl- (PTl+PT2) /PI
BTRmPI-BTR
Flsl.0/ (TAN (GMMA) *TAN (BTR))
F2-COS (GMMA)/ISIN (BTR)

0.F3-SQRT ((SIN (GI4MA) )**2- (COS (BTR) )**2)
AlPTl- (SIN (GMMA)*"2) 'COS (BTR) 'ACOS (-Fl)

PT2-ACOS (F2) -COS (GZ4MA) *F3
FE2- (PT1+PT2) /PI
END IF

N ~PRINT *#'FEl- ',FE1,'FE2- ',FE2
C

ASDEl-XASDEl
ASDE2-XASDE2

C
C DIRECT EARTH RADIATION HEAT INPUT (QDERT):
C

IF (NDERT .EQ. 1) THEN
QDERT= (ABERTl*FEl'ASDEl+ABERT2*FE2*ASDE2) 'DERAD
ELSE
QDERT-O. 0
END IF

PRINT *#IDIR. EARTH - ',QDERT
C
C EARTH'S ALBEDO RADIATION HEAT INPUT (QALBD):
C

IF (NALBD .EQ. 1) THEN
ALBRAD-ALBD*GS
CEETA-SIN (IPR4) COS (THO)

* IF (CBETA .LT. 0.0) CBETA-0.0
QALBD- (DELTA) *(ABALBl'ASDEl'FEl+ABALB2*ASDE2*

* 'U+ FE2)*ALBRAD*CBETA
ELSE
QALBD-O. 0

* END IF
* .~ PRINT *f'ALBEDO HEAT- ',QALBD

* ~ **

C TOTAL HEAT INPUT COIN):
C *

QINmQDSOL + QDERT +QALBD
PRINT *f'HEAT INPUT= ',GIN

PRINT *#'EQUILIBRIUM TEMP (DEGREE KELVIN)= ',TMPEQ
ALT- RO-RE'I PRINT *#'ALT= ',ALTo' THETA- ',,THO,' PHI- ',PHO
END

Ii.
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Sample Input Data

Tape 32

6374,33P0,0p1.5707963

6374.331353.o0E+06,0.3
1.00,1.00,1.00,237,0E+06
1,001.00"
1,00r1.0095#670E-02

.7518784E-04,.7518784E-04,1,750376E-03

Sample Run Session and Output Data

FORTRAN
READY*
OLDPEOTEMP
READY,
GETTAPE32
READY.

RUN

ENTER CODE FOR DIRECT SOLAR? DIRECT EARTH"
AND ALBEDOt 1-YESP 2-NO? 1,1,1

EGUILIBRIUM TEMP (DEGREE KELVIN)- 362.4644842124
ALT= 200. THETA- O. PHI- 1,5707963 S

SRU 0.816 UNTS,

RUN COMPLETE.

U°

pp. = . * * - . . , " . . . . . . - - . . -. _ -
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Computer Program IV

Listing of Sample Program to Compute Combined Effects of
.Radiation Pressures and Differential Gravitational Forces

PROGRAM PRSSEFF (INPUT,OUTPUT,TAPE50,TAPE51,TAPE52)
C ---------------------------------------------
C THIS PROGRAM COMPUTES R, THETA, X AND PHI
C AND THEIR FIRST TIME DERIVATIVES
C FOR AN AXIALLY FLEXIBLE DUMBBELL STRUCTURE

5' C ORBITING IN SPACE WITH PLANAR MOTION
C UNDER DIFF. GRAVITATIONAL FORCE AND
C RADIATION PRESSURE EFFECTS.

C SUN LIES IN THE ORBIT PLANE. STRUCTURAL SURFACE
C IS ASSUMED TO BE COMPLETELY ABSORBING TO RACIATION.
C NOTE: THIS PROGRAM COMPUTES DIRECT SOLAR EFFECTS
C FOR A COMPLETELY ABSORBING SURFACE IN
C AN ARBITRARY POSITION.
C BUT, IT CAN COMPUTE DIRECT EARTH
C AND ALBEDO EFFECTS ONLY FOR A
C SPECIAL POSITION WHEN THE SPACE STRUCTURE
C IS AT RIGHT ANGLE TO THE EARTH-STRUCTURE
C LINE, THAT IS, PHI a 90 DEGREES. THIS
C CONFIGURATION WILL EXPERIENCE MAXIMUM 5,

C EFFECTS DUE TO DIRECT EARTH AND ALBEDO
C RADIATION.
C-----------------------------------------------
C
C RAMESH B. MALLA AUG.11, 1985
C "

C
C SIMULTANEOUS NONLINEAR COUPLED DIFFERENTIAL
C EQUATIONS ARE SOLVED BY NUMERICAL ANALYSIS USING
C 5TH AND 6TH. ORDER RUNGE-KUTTA-VERNER METHOD
C (IMSL SUBROUTINE PACKAGE: DVERK)
C ---------------------------------------------------
C

DIMENSION Y(8)
DIMENSION C(24),W(8,9)

REAL IPRM
COMMON XM,XM1,XM2,XMBAR, XMU,UGC,XE,XA,XS,XKA,RM,

+ RE, NDSOL, NDERT, NALBD,
+ ABSOL,ABERT,ABALB,N+ XAS DE,
+ PI, IPRM, NDELTA, NCOUNT, RDIFF1,
+ DSPRSS,DEPRSS,ALPRSS,
+ QI,Q2,Q3,Q4,XLVA

EXTERNAL FCN1
C

" .~~ W *
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PRINT * 'ENTER CODE FOR DIRECT SOLAR, DIRECT EARTH,'
PRINT *,AND ALBEDO: 1=YES, 2-NO'
PRINT *,ENTER "10 FOR DIRECT EARTH AND ALBEDO'
PRINT *,RADIATION, ONLY IF INVESTIGATING A'
PRINT * 'SPECIAL CASE, PHI - 90 DEGREES.'
PRINT *, OTHETWISE, THESE VALUES MUST BE -2-.'
READ *,NDSOL,NDERTNALBD
WRITE (51,*) ' ***RADIATION PRESSURE EFFECTS***
WRITE (51,*)
WRITE (52,*) I ***RADIATION PRESSURE EFFECTS***'
WRITE (52,*) '
IF (NDSOL .EQ. 1 .AND. NDERT .NE. 1 .AND. NALBD

+ .ME. 1)THEN
WRITE (51,*) '**DIRECT SOLAR EFFECT ONLY **'

WRITE(52,*) '**DIRECT SOLAR EFFECT ONLY **'

ELSE
END IF
IF (NDSOL .NE. 1 .AND. NDERT .EQ. 1 .AND. NALBD

+ .NE. 1) THEN
WRITE (51,*) '**DIRECT EARTH RADIATION EFFECT ONLY *'
WRITE(52,*) '**DIRECT EARTH RADIATION EFFECT ONLY **'
ELSE
END IF
IF (NDSOL .NE. 1 .AND. NDERT .NE. I .AND. NALBD

+ .EQ. 1) THEN
WRITE (51,*) '**ALBEDO EFFECT ONLY**'
WRITE(52,*) '**ALBEDO EFFECT ONLY**'
ELSE
END IF
IF (NDSOL .EQ. 1 .AND. NDERT .EQ. 1 .AND. NALBD

+ .EQ. 1) THEN
WRITE (51,*) '**TOTAL RADIATION PRESSURE EFFECTS**'
WRITE(52,*) '**TOTAL RADIATION PRESSURE EFFECTS**'

ELSE
END IF
IF (NDSOL .EQ. 1 .AND. NDERT .NE. 1 .AND. NALBD

+ .EQ. 1) THEN
WRITE (51,*) '***DIRECT SOLAR AND ALBEDO EFFECTS***'
WRITE(52,*) '**DIRECT SOLAR AND ALBEDO EFFECTS**'

ELSE
END IF
PI-3. 141592

C
WRITE (51,*) 'UNITS ARE IN NEWTON, WATT, KILOMETER AND'
WRITE (51,*)'MINUTES (ANGLE IN RADIAN, TEMP. IN KELVIN)'
WRITE(52,*) 'UNITS ARE IN NEWTON, WATT, KILOMETER AND'
WRITE(52,*)'MINUTES (ANGLE IN RADIAN, TEMP. IN KELVIN)'
READ (50,*) RM,XM2,GE,RE,UGC
READ (50,*) XE,XHT,XS
READ (50,*) RO,THO,XO,PHO

READ (50,*) RDOT,THDOT,XDOT,PHDOT

.4'o
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READ (50,*) ABSOL,ABERT,ABALBREAD (50,*)XASDE
READ (50,*) DSPRSS,DEPRSS,ALPRSS
READ (50,*) IPRM,NDELTA
READ (50,*)TOL
XM1RM* XM2
XA-0.05*XS*XHT
XKA - (XE* A)/ XS
XMU=GE* (RE**2)
XM=XM1+XM2
XMBAR- (XM1*XM2)/XM
WRITE (51,*)' Ml- ',XM1,' M2= ',XM2,' Ml/M2- ',RM

WRITE (51,*)' ACC.GRAV.= ',GE,' RADIUS OF EARTH .RE
WRITE (51,*)' ELAST MOD= ',XE,' X-AREA OF LINK= ',XA
WRITE (51,*)' STIFFNESS- ',XKA,' REF LENGTH- ',XS
WRITE (51,*)' UNIVERSAL GRAV. CONST.- ',UGC -:

WRITE (51,*)'GRAV. CONST.- ',XMU
WRITE (51,*)l TOTAL MASS- ',XM,' REDUCED MASS- ',XMBAR
WRITE (51,*)'***'
WRITE (51,*)'DIRECT SOLAR RADIATICN PRESSURE - ',DSPRSS
WRITE (51,*)'DIRECT EARTH RADIATION PRESSURE AT'
WRITE (51,*)' THE SURFACE OF THE EARTH ',DEPRSS
WRITE (51,*)IALBEDO RADIATION PRESSURE AT THE'
WRITE (51,*)' EARTH SURFACE - ',ALPRSS
WRITE (51,*) 'ABSORPTANCE TO DIRECT SOLAR'
WRITE (51,*) ' RADIATION- ',ABSOL
WRITE (51,*) 'ABSORPTANCE TO DIRECT EARTH'
WRIT - (51,*) ' RADIATION= ',ABERT
WRITE (51,*) 'ABSORPTANCE TO ALBEDO RADIATION- ',ABALB
WRITE (51,*) 'TOTAL AREA OF ONE SIDE OF THE STRUCRURE'
WRITE (51,*) ' EFFECTIVE TO RADIATION PRESSURE - ',XASDE
WRITE (51,*) '***'

WRITE (51,*) 'INCLINATION OF SUN FROM NORMAL TO'
WRITE (51,*) ' ORBIT PLANE= ',IPRM,' (RAD)'
WRITE (51,*)TOL
WRITE (51,*)'****' "
WRITE(52,*)' Ml- ',XMl,' M2- ',XM2,' Ml/M2- ',RM
WRITE(52,*)' ACC.GRAV.- ',GE,' RADIUS OF EARTH- ',RE
WRITE(52,*)' ELAST MOD- ',XE,' X-AREA OF LINK- ',XA
WRITE(52,*)' STIFFNESS- ',XKA,' REF LENGTH- ',XS
WRITE(52,*)' UNIVERSAL GRAV. CONST.- ',UGC
WRITE(52,*)'GRAV. CONST.- ',XMU
WRITE(52,*)' TOTAL MASS- ',XM,' REDUCED MASS- ',XMBAR
WRITE(52,*) '***'
WRITE(52,*) 'DIRECT SOLAR RADIATION PRESSURE- ',DSPRSS
WRITE (52,*) 'DIRECT EARTH RADIATION PRESSURE AT THE
WRITE (52,*) ' EARTH SURFACE- ',DEPRSS
WRITE (52,*) 'ALBEDO RADIATION PRESSURE AT THE'
WRITE (52,*) ' EARTH SURFACE- ',ALPRSS
WRITE(52,*) 'ABSORPTANCE TO DIRECT SOLAR RADIATION- ',ABSOL r:

d.-.
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WRITE(52,*) 1ABSORPTANCE TO ALBEDO RADIATION =',ABALB
WRITE(52,*) 'ABSORPTANCE TO DIRECT EARTH RADIATION= ',ABERT
WRITE(52,*)U**
WRITE(52,*) 'TOTAL AREA OF ONE SIDE OF THE STRUCTURE,
WRITE(52,*) 'EFFECTIVE TO RADIATION PRESSURE= ',XASDE
WRITE(52,*) **
WRITE(52,*) 'INCLINATION OF SUN FROM NORMAL TO'
WRITE(52,*) ' ORBIT PLANE- ',IPRM,' (RAD)'
WRITE(52,*)TOL
.WRITE(52,*)'***'
NW= 8
N= 8
T=0.0
Y (1) =RO
Y(2)=THO
Y(3)=X0
Y (5) =RDOT
Y(6)-THDOT
Y (7)-=XDOT
IF (NDERT .EQ. 1 .OR. NALED .EQ. 1) THEN

Y (4)=-1. 5707963
Y(8)=0.0

ELSE
Y(4)=PHO
Y(8)=PHDOT
END IF
IND-1

C
RCRAT=Y(1)/RO
XRAT-Y(3)/XS
CALL RADFRC (N,T,Y,QR,QTH,QX,QPH)
Q1=QR
Q2=QTH
Q3-QX
Q4=QPH
WRITE (51,10)
10 FORMAT ('TIME',15X,'RC',10X,'THETA',10X,'X',13X,'PHI',
+ 11X,'THDOT',9X,'RC/RO',10X,'X/XS',12X,'L')
WRITE(52,15)

15 FORMAT ('TIME',12X,'RDOT',10X,'XDOT',10X,'PHDOT',13X,
+ 'QR',12X,'QTH',12X,'QX#,12X,'QPH',12X,'RDIFF')
WRITE (51,20)T,(Y(K),Knl1,4),Y(6),RCRAT,XRAT,XLVA
20 FORMAT (9E14.8)

* WRITE(52,25)T,Y(5),Y(7),Y(8),QRQTH,QX,QPH
25 FORMAT (8E14.8)
NCOUNT-0

me TEND=0.0
DTENDu 0.2

DO 50 K-1,4000
TEND=TEND+ DTEND
CALL DVERK(N,FCN1,T,Y,TEND,TOL, IND,CNW,W, IER)
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IF (IND.LT.0.OR.IER.GT.0) GO TO 30
CALL RADFRC (N,T,Y,QR,QTH,QX,QPH)
Ql=QR
Q2=QTH
Q3=QX
Q4=QPH
IF (Y(2) .LE. (2.0*PI)) NORB=0
IF (Y(2) .GE. (2.0*PI)) NORBI-
IF (Y(2) GE. (4.0*PI)) NORB=2
IF (Y(2) .GE. (6.0*PI)) NORB=3
IF (Y(2) .GE. (8.0*PI)) NORB=4
THETA1(1.0+4.0*NORB)*PI/2.0
THETA2=THETA1+P I
IF (Y(2) .GT. THETAl .AND. Y(2) .LT.THETA2) THEN
CALL SHADOW (N,T,Y,TEND,RDIFF)
DTENDU 0.1

ELSE
NCOUNT=0
DTEND-0.2

END IF
RCRAT=Y(1)/RO
XRAT- Y (3)/XS
WRITE (51,40)TEND,(Y(L),L-1,4),Y(6),RCRAT,XRAT,XLVA
40 FORMAT (9E14.8)
IF (Y(2) .GT. THETAl .AND. Y(2) .LT.THETA2) THEN
WRITE (52,45)TEND,Y(5) ,Y(7) ,Y(8),QR,QTH,QX,QPH,RDIFF

.- b FORMAT (9E14.8)
ELSE
WRITE(52,48)TEND,Y(5),Y(7),Y(8),QR,QTH,QX,QPH

48 FORMAT (8E14.8)
END IF
50 CONTINUE
STOP
30 CONTINUE
STOP
END

" ', C

C --- SUBROUTINES

C
C

&C -- -- - -- - -- - -- - -- -- - -- - -- - -- -

C SUBROUTINE *FC1*

C""C **********

SUBROUTINE FCN1 (N,T,Y,YD)
DIMENSION Y(N),YD(N)
REAL IPRM

COMMON XM,XM1,XM2, XMBAR, XMU,UGC, XE, XA, XS,XKA,RM,
+ RE,NDSOL,NDERT,NALBD,
+. ABSOL,ABERT,ABALB,

I7



+ XASDE,
+ PI,IPRM,NDELTA,NCOUNT,RDIFF1,
+ DSPRSS, DEPRSS,ALPRSS,
+ Q1IPQ2,Q3,Q4,XLVA

YD (1) =Y (5)
YD (2) =Y (6)
YD (3)-=Y (7)
YD (4)=Y (8)
QR=Q1
QTH=Q2
QX=Q3
QPH-Q4 -

A=Y(1) **2.
B= (Y(3) **2./XM~**2.)
CC=COS (Y(4))
D=2.* (1./Y4) *Y(1) *Y(3) *~C
R1= (A+(XM2**2. )*B+D*XM2)**0.5
R2=SQRT (A+ (XM1**2. )*B...D*XM1) id
Xl - (XM2/ XM) * Y(3)
X2= (XM1/XM) *Y (3)
DUD X-XKA* (Y (3) -XS)
E= (XM1* (Y(l)+X1*CC) )/R1**3.
F. (XM2* (Y (1) X2*CC) )/R2**3.
YD(5)u(Y(1)*(Y(6))**2.)-(XMU/XM)*(E+F)+(QR/X4)
G-SIN(Y(4))
BH=XMU*( (1./R2**3.)-(l./R1**3.))*G

+ +((QTH-QPH)/(XM*Y(1)**2))
BI=Y (6)+Y(8)
BJ= (Xl+Y(1)*CC)/(R1**3.)-
BK. (Y(l)*CC-X2)/(R2**3.)
GRV= (UGC*XM1*XM2)/(Y(3) **2.)

+YD(7)=Y(3)(BI**2.)XMU*(BJ-BK)-(DUDX/XMBAR)-(GRV/XMBAR)

IF (NDERT .EQ. 1 .OR. NALBD .EQ.l. ) THEN
YD (8)= ..

ELSE

+ +QPH/(XMBAR*(Y(3)**2))-(QTH-QPH)/(XM*(Y(1)**2))
END IF
RETURN
END

C SUBROUTINE TO DETERMINE EARTH SHADOW ENTRY AND EXIT

C
CUBROUTINE SHADOW (N,T,YTEND,RDIFF)

DIMENSION Y(N)
REAL IPRM1-
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COMMON XM, XM1, XM2, XMBAR, XMU, UGC, XE, XA, XS, XKA, RM,
+ RE, NDSOL, NDERT, NALBD,
+ ABSOL,ABERT,ABALB,
+ XASDE,
+ PI,IPRM,NDELTA,NCOUNT,RDIFF1,
+ DSPRSS,DEPRSS,ALPRSS,
+ Q1,Q2,Q3,Q4,XLVA

CSQ= (COS (Y(2)) )**2 J

SSQ-(SIN(IPRM) )**2
RSH=RE/SQRT (1-CSQ*SSQ)
RDIFF=RSH-Y (1)
IF (NCOLJNT .EQ. 0) GO TO 300

IF (RDIFF1 .GT. 0 .AND. RDIFF .LT. 0 .OR.
+ RDIFF1 .LT. 0 .AND. RDIFF .GT. 0) THEN

NDELTA=ABS (NDELTA-1)
PRINT *"SSHADOW ENTRY/EXIT AT ',Y(2),' (RAD)',' TIME- ',TEND
WRITE(52,*) 'SHADOW ENTRY/EXIT AT ',Y(2),' (R&D)',' TIME- ',TEND

ELSE
NDELTA. NDELTA

END IF
300 RDIFF1-RDIFF
NCOUNT=NCOUNT+1
RETURN

END
C
C-- - - - - - - - - - - - - - - - - - - - - -

*C SUBROUTINE TO DETERMINE GENERALIZED FORCING
C FUNCTIONS DUE TO RADIATION PRESSURE.
C - - - - - - - - - - - - - - - - - - - - - - - -
C

SUBROUTINE RADFRC(NTYRQHQXP)
DIMENSION Y(N)
REAL IPRM
COMMON XM,XM1,XM2,XMBAR,XMU,UGC,XE,XAXS,XKA,RM,

+ RENDSOL,NDERT,NALBD,
+ ABSOL,ABERT,ABALB,
+ XASDE,
+ PIOIPRMNDELTA,NCOUNT,RDIFF1,
+ DSPRSS, DEPRSS,ALPRSS,
+ Q1,Q2,Q3,Q4,XLVA

X1=(XM2/XM)*Y(3)
X2- (XM1/XM) *Y (3)
IF (XM1 .GE. XM2) XLVA(Y(3)/2)-X2

-; IF (XM1 .LE. XM2) XLVA=X1-(Y(3)/2)
SQL VA. XLVA* *2
A-Y(1) **2 .
CC- COS (Y (4))
G=SIN(Y(4))
RP-SQRT(A+SQLVA+2*Y(1)*XLVA*CC) ,

.9 ~C *****
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C GENERALIZED FORCES DUE TO DIRECT SOLAR RADIATION
C ******

IF (NDSOL .EQ. 1) THEN
ETA= Y(2) + Y(4)
CETA-COS (ETA)
S ETA- SIN (ETA)
Sl=CETA*SIN (IPRM)
S2--SETA*SIN(IPRM)
S3--COS (IPRM)
S0laCOS (Y(2) )*SIN(IPR4)
S02--SIN (Y (2)) *SIN (IPR4)
S03=-COS (IPR4)
CBTS-SETA*SIN (IPR4)
DSFACT-NDELTA*DSPRSS*ABS (CBTS) *XASDE
XLDSuY (1) *SIN (Y (2)) +XLVA*SETA
FDS=DSFACT*SQRT (S1**2+S2**2)

C
DSQR--DSFACT*S01
DSQTH=XLDS*FDS
DSQX=-DSFACT*S1

* DSQPH--DSFACT* XLVA*S 2
* ELSE
* DSQR=O.0

DSQTHmO.O
DSQX-O.0
DSQPH-O.O
END IF

C *******

*C GENERALIZED FORCES DUE TO DIRECT EARTH RADIATION
C ********

IF (NDERT .EQ. 1) THEN
DEFACT- (DEPESS) *XASDE
DEQR.DEFACT*(C(RE/Y(1) )**2)
DEQTHu -DEQR* XLVA
DEQX=0.0
DEQPH--DEQR* XLVA

* ELSE
DEQR-0.0

* DEQI"HnO.0

DEQPH-0.0
END IF

C *******

C GENERALIZED FORCES DUE TO ALBEDO RADIATION
C *******

IF (NALBD *EQ. 1) THEN
CBETASIN(IPRM)*COS(Y(2))
IF (CEETA .LT. 0.0) CBETA-0.0
ALFACT=NDELTA* (ALPRSS) *XSDE
ALQR-ALFACT*CBETA* ((RE/Y(1) )**2)
ALQTHu-DEOR* XLVA

7U
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ALQX-0 .0p ALQPH=-ALQR* XLVA

ALQR=0. 0
ALQTH=O.0
ALOX. 0.0
ALQPH=0.0
END IF

C **************

C TOTAL GENERALIZED FORCES AND MOMENTS
C ******************

QR=DSQR+DEQR+ALQR
OTH- DSQTH+ DEQTH+ALQTH
QX=DSQX+DEQX+ALQX
QPH-DSQPH+DEQPH+ALQPH

C *****************

RETURN
END

I-a
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Sample Input Data

Tape 50

.4 I .000000,5.OOOE+05v3.5316E+1,6.37433E+3,8.64432E-16

6.689496E+l1,4.899E-3,1.0 4

6.5743300000E+3,0000~v, .00230,O.0000000
0.0,B.BB30000000E-02,0.0,0.00
1.10001 p.00
8.7518784E-04

* 4.660009,497950w 1.206580
1.57079691
I .OE-06

.4 Sample Run Session

FORTRAN
READY*

PRIMARYPPREFF
READY*

FINDLIBvIMSL
READY-

XPLIPeRARYIMSL
READY.

GETPTAPE5O
READY.

RIJN

ENTER CODE FOR DIRECT SOLARP DIRECT EARTH9 4

AND ALBEDU: 1YES, 2-N0
4. ENTER 41 FOR DIRECT EARTH AND ALBEDO

RADIATION, ONLY IF INVESTIGATING A
SPECIAL CASE, PHI - 90 DEGREES.,
OTHETWISEP THESE VALUES MUST BE *2.

STOP

SRU 6.217 UNTS.

RUN COMPLETE.
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APPENDIX F

GLOSSARY OF TERMS USED IN COMPUTER PROGRAMS

The following is a glossary showing the correpondence

between the variables in the computer programs and those

used in the theoretical analysis.

Notations Used in Corres2onding Natations

Co__uter Programs in Analyis

ABALB ar

ABALB1 an

ABALB2 ar2

ABERT a.

ABERT1 ael

ABERT2 ae2

ABSOL as

ALBD Ar

_ALPRSS PaIb

ALOR (0 r)al b

ALOTH (Q1) alb

ALOX (Qx)alb

ALOPH (O) alb

BTR 13r

- 295
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CE4ETA cosi i

CBTS COSOts

DEPRSS Pd,

ADEOR (0r de

DEOTH (ede

*DE2X d

DEOPH (G de

DERAD E

DGF AFg

DSPRSS Pds

DSOR (0 r~ ds

DSOTH ( 0e~ ds

DSOX (Q (ds

DSOPH (QO~ds

DUDX d U / dx

EPSL CC

ETA Y

'aFEI Fe1

FE2 F6',

GE

GMMA r

GRY v

GS GS

I GF Fg o

I FRM

NDELTA
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PHDOT

PHO 0

OALBD

WDERT 4

ODSOL 4s

DIN qj1,

DOUT qout

DR O
OTH

ax o

OPH 00

UGC 6aRDOT r0 ; rc

RC r

RDIFF (rsb - rc)

*RE R

RM ml/m 2

RP r

RO ro

RSH rs

Rl r1

*RIO rjo

R2 r2

R20 r2

SIGMA T

SPHT c
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Si S1  F

S2 S,-

63 63

So1 Sol

S02 S02

T; TIME
TGFF

.. THDOT o

THO 9

TMPO T

TMPS T
TPROP Ea

X x

.JbAXA

XASDE s

5'..XASD1 

Asdl

XASD2 As,

XASRF s

S.XDOT 

0
IE E X

d XHT ha

S XKA 
Ka*

dXLVA; L1

XM m

XMASS M
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×MI m I

XM1 
N

2

XMBAR

XMU ;

xs x

XO x 0

X 1 x 1

X2 x 2

Y (1) r c

Y(2); THETA 0

'- Y (3) x "
xh

Y (4) 0
j~ Y(5)

Y ()

Y (7)

Y (9) T

YD (5) r.

YD (6)

YD (7)

YD(8)

YD (9)

°4,
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LIST OF SYMBOLS

(r,z) Coordinates of a point on undeformed axisymmetric membrane

S"(p,n) Coordinates of the point (r,z) on the deformed membrane

ds Length of an undeformed element in meridional direction

dS Length of the element on the deformed membrane in meridional
direction

X , s

X2 Principal stretch ratio in the meridional direction

A2  Principal stretch ratio in the circumferential direction

. , , Principal stretch ratio in the normal to the deformed middle

surface

S0  Generating curve of an undeformed membrane

SI  Curve corresponding to S0 on the deformed membrane

N Principal stress resultant in the meridional direction

N 2  Principal stress resultant in the circumferential direction

K Principal curvature in the meridional direction

K Principal curvature in the circumferential direction
2

R Radius of curvature in the meridional direction
.4

- R2  Radius of curvature in the circumferential direction

p Internal pressure in the outward normal direction

Sa -pr/(2h0C1)

Axial force
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LIST OF SYMBOLS (continued)

-Aj

F -F/(4h rC 1

Angle between the p axis and the tangent to the meridian on the
deformed membrane

W -W(I I 2,T). Strain energy function per unit undeformed volume _

w -w(X1, 2,T). Strain energy function per unit volume

I First invariant of total extension

12 Second invariant of total extension

h Thickness of the undeformed membrane
0

C1 ,C2  Mooney material constants

R Gas constantc

Pc Density of the membrane

M Number average molar mass of the chain length
i! T0

T Initial temperature of the membrane
0

T Final temperature of the membrane

u,v,w Basic dependent variables for generally axisymmetric membranes

U Internal energy of the membrane

W Work done on the membrane by external forces

Q Value of the heat supplied to the membrane

S Entropy

A Helmholtz free energy

CL Thermal expansion coefficient of the membrane

''-ii
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LIST OF SYMBOLS (continued)

a c  Thermal expansion coefficient of the cord

* represents the state of free stress

represents the isothermal processes

A,A 2  Stretch ratios of the deformed membrane in the centre plane

z -z/r

Radius of the deformed membrane in the center plane

amam =p/r-A

inc -n/r-X2

N N /(2hoC )" Diawensionless stress resultant in the meridional1a 1 0 1direction

N N /(2h C ). Dimensionless stress resultant in the
2a 2 0 1

circumferential direction

r C2/C Ratio of the Mooney material constants

.5 L A half of length of the undeformed membrane0

L A half of length of the deformed membrane

" 0 L/r. Dimensionless length of the undeformed membrane

L L/r. Dimensionless length of the deformed membrane

r1,t2  Lagrange multipliers

Pcr Critical pressure

..- ,,



LIST OF SYMBOLS (continued)

r Critical material constant
crI
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CHAPTER I

INTRODUCTION

The problem of investigating large deformations of very thin,

flexible structures began to assume importance nearly two decades ago

when small pneumatic structures were constructed for civil C54] as well

as military use C21, and when space inflatable structures [2] C34] were

deployed. Usually these structures were designed to act as coverings

over some area on the ground, or as space vehicles and their components,

such as communication satellites. They were constructed of light

weight, flexible membranes, and combine the inherent strength and

reliability of material used in tension with the structural efficiency

of the shell. In space science, flexible structures have special

importance. No other type of structure can provide the light weight and

* compactness required for launching into space and the speed and ease of

erection as a pneumatic structure. Recently, serious attention has been

given to the development of design criteria for large space structures.

The possible deployment of very large space structures having

characteristic lengths of several kilometers C26] gives rise to a number

of new and significant problems.

Large space structures will be deployed in a complex space

environment. The deformations and the stresses of the structures will

be influenced by various physical factors. They will be exposed to a

0 0

wide variety of temperature varying from -105 C to 121 C [2] during

. -.

11--
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orbit. Thermal deformations, thermal stresses, thermal vibrations as

well as thermally induced instability may occur. Since the external

pressure is approximately zero, the instability caused by internal

pressure may be a significant problem. In addition, there are various

environmental factors, such as radiation pressure, loading due to high

energy electrons and protons, and the albedo effects, etc. Among these

factors, the effects of the change of temperature and the difference

between internal and external pressure on the structures are the most

essential. Under some conditions, there is no doubt that an inflated

membrane structure can be used as a substructure or element of a large

truss-like space structure. Therefore, the investigation of mechanical

and thermal properties of flexible membrane structures is one of the

significant problems for large space structures. In most of the early

works on flexible structures, the analysis and design criteria were

based on simplified linear small deflection theories. Obviously, these

are not suitable for large space structures in complex space

environments. We must develop a theory of nonlinear membrane behavior

with the effects of both mechanical and thermal loadings. "

Thin membrane shell theory has a long history [29J. The theory of

large deformations of nonlinear elastic membranes was presented

systematically by Adkins and Rivlin [1], Green and Zerna C14], and Green

and Adkins C15] after the Second World War. During the past thirty

years, considerable progress in development of the theory has been made

[See 5, 28, 38, 40]. So far the nonlinear membrane theory has been

4,9

N[
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successfully applied to a number of problems (For example, [, 9, 16,

18, 21-23, 25, 30, 35, 41, 45, 46, 49, 53, 56] ). Because of the

nonlinearity of the equations involved, the application of the theory to

particular problems is in general very difficult. Fortunately, the

solvable problems in which there is a high degree of symmetry are often

very important in practice.

Particular attention has been paid to axisymmetric membranes due to

their importance in various membrane structures, and they have been

studied by many authors (see [9, 14, 15, 21, 35, 49, 53], for example).

In the early works, the problem was formulated in terms of eight coupled

equations for the determination of eight unknowns and the solutions were

obtained numerically. For such a large system of equations, the choice

of boundary conditions and constants of integration is often very

complicated and computation is often quite tedious. In order to

Usimplify the equations and the computation, two different approaches..

were developed. Yang and Feng [53) reduced the number of equations by

means of a proper choice of variables. The governing equations were

simplified to a set of three first order ordinary differential

equations. In the other side, Wu [49], Kydoniefs and Spencer C21], and

Kydoniefs [22) reduced the governing equations to a set of quadratures

in terms of the existence of a first integral for the special case in

which either the undeformed or deformed profile is a circular cylinder.

Both ways are efficient for the simplification of the problem.

Essentially, each of them is a method for the reduction of order of the
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system of differential equations. All of the investigations on

deformations, stresses and stability of nonlinear membranes mentioned

above have been concerned only with mechanical loadings with no

consideration of thermal effect.

The purpose of our work is to develop the theory of nonlinear

axisymmetric membranes with changes of temperature. The emphasis is on

the effect of the thermal factor on constitutive relations,

deformations, stresses and stability of ax1symmetric membranes. The

basic goal of the theory of axisymmetric membranes is to determine

finite deformations and thermal stresses. The best method of achieving C.

the goal is the one involving a minimum number of differential equations

with a minimum number of variables and choosing the boundary conditions

and parameters with ease.

In this dissertation, first we present a suitable mathematical

model of nonlinear axisymmetric membranes based on the theory of

axisymmetric membranes and thermodynamics. Then the problem of finite

deformations and thermal stresses of axisymmetric membranes with some

additional conditions is reformulated by taking advantages of the two

methods mentioned above. Under constant pressure the governing

equations have been simplified to a set of two first order ordinary

differential equations with explicit derivatives. The important class

of problems in which the undeformed profile is a circular cylinder may

be characterized by a first order ordinary differential equation. Since

the number of equations and variables is reduced to the minimum
°•'
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possible, the problem is greatly simplified and the method is convenient

for application to engineering problems. In order to investigate *.

inflated instability analytically, we have presented an efficient

approximate procedure. Although the procedure is demonstrated by the

case of an initially circular cylinder as an example, it can be applied

to a wide range of problems.

.

Mathematical models of axisymmetric membranes under mechanical and

thermal loadings are given in Chapter 2. In section 2.1 the theory of

nonlinear membranes in isothermal processes is reviewed briefly. The

detailed analysis of the thermodynamic processes of deformations of

nonlinear membranes is discussed in section 2.2. Based on sections 2.1,

2.2, the mathematical model of general axisymmetric membranes is derived

in section 2.3. For the special cases of constant pressure and an

initially circular cylinder with constant pressure, simplified

mathematical models are developed in section 2.4. The application of .

the mathematical models to a particular structure is given in Chapter

III. We discuss the boundary value problem of an initially circular

cylindrical membrane reinforced by flexible cords at both ends first.

The numerical results on the deformations, the thermal stress

resultants, and inflated instability are represented in section 3.2,

3.3, and 3.4 respectively. Finally, in section 3.5 and 3.6, we have

developed an efficient approximate procedure with application to

instability.

'S'
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C HAP T ER II

FORMULATIONS

Classical membrane theory has been widely used as a first

approximation in the analysis of membranes and shells, and in various

analogue to solve other problems, for example the torsion problem in

classical elasticity. Currently there are many important problems

involving membranes. They include inflatable structures, fluid

containers, weather balloons, communication satellites, oil slick

containment apparatus, and many problems in biological engineering. In .

*' many of these there is symmetry with regard to one or two coordinates

Uand the problems may be solved exactly for a general material.

Axisymmetric behavior of membranes is one of the important and practical

problems.

In this dissertation, we investigate finite deformations, thermal

stresses, and instability of the inflated axisymmetric membrane. In
*ep

particular, the Influence of change of temperature is considered. -,

For simplification the following assumptions are made in this

dissertation:

(1) The undeformed and deformed profiles of the membranes are

axisymmetric. The axis of symmetry before deformation coincides with

that after deformations. Also the loadings are axisymmetric about the

axis.

11-6 .-I! ".
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(2) The membranes are composed of an incompressible, homogeneous,

isotropic, elastic material with very thin uniform thickness ho before

deformation. This assumption enables us to use membrane theory and

ensures that the strain energy function of the system exists.

(3) The temperature of the entire system is uniform at any moment

and varies slowly with time. The thermodynamic processes can be assumed

to be reversible.

2.1 GENERAL MEMBRANE THEORY

In this section we derive equations for nonlinear axisymmetric

membranes under a uniform internal pressure and an axial force.

We assume the undeformed and the deformed profiles are generated by

revolution of plane curves S and S through an angle 2n about an axis Z40 1
respectively. The geometry of an axisymmetric membrane can be described

, by polar coordinates. We suppose that (r,z) is any point of the middle

surface of the undeformed membrane , ds is arc length measured along the

meridian through the point, and the undeformed configuration of the

membrane is given as

z - z(r) (2.1)

-After deformation the point (r,z) is displaced to a new position

(p,n). The corresponding arc length measured along the corresponding

meridian in the deformed membrane is denoted by dS. The situation in

the undeformed and deformed membrane is illustrated in Figure 1 .

'00d
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From the symmetry of the system it follows that the principal

directions of strain coincide with the meridian, the line of latitude -

and the normal to the deformed middle surface. The principal stretch

ratios in the those principal directions are denoted by ki, k, and X3

respectively. If we choose r as a single independent variable, o, n,

X1 , X2 and X, may be regarded as functions of r. We then have

X, - . ( a ------ (2.2.1)

1, p / r (2.2.2)

X, 1 1 / Al, (2.2.3)

where the primes denote differentiation with respect to the independent

variable r. Equation (2.2.3) comes from the incompressible assumption.

Henceforth we shall use the subscript I and . to denote the meridional

and circumferential directions of the deformed membrane, respectively.

The equilibrium equations in the meridian-tangential and the normal

directions of the deformed membrane are

dN

(N - 2 ) 0 (2.3.1)

KIN, + KN2 - p (2.3.2)

where N,,N, are the stress resultants with dimensions of force per unit "

edge length of the membrane; K,, K. are the principal curvatures; and P

is the internal pressure in the outward normal direction of the

membrane.

U
/



The principal curvatures and the geometric relation of the deformed

surface can be written in the form

K- d(Aino)/dp (2. .)

K2 - sino/p (2.4.2)

tgo - (2.4.3)

where is the angle from the p axis to the tangent to the meridian.

The principal stress resultants per unit length of the deformed

surface are

N - N1(A,, 2 ) (2.5.1)

p-N 2  N2(X1,,I) (2.5.2)

where functions N, and N2 depend on the strain energy function of the

material under consideration.

. For an incompressible material, the third strain invariant T -1.
.3

The strain energy density function W is a function of the strain

Invariants I,, 12 and temperature T

W - W(I,,I,,T) (2.6)

where I,, 1, are given by

I A2 + A2 + (2.7.1)

12 2 - +  +  (2.7.2) 4'
'P*~~~~~%%~~ 2*b**~ X2P~...-.-r''.
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In isothermal processes the stress-strain relations C47] are given

by .*

N, 2h, 3 +( -W-- (2.8.1)

S2h( , I A X 2. (2.8.2)

For many rubber-like materials a strain energy density function of

wide application is the Mooney form C27] which is given by

W - C,(I,-3)+C,(Iz-3) (2.9)

where C,, C. are material constants with the dimension of stress.

From the Gaussian statistical theory of the cross-linked network

[43], we have

C , - R p T/2M (2.10)

where R P , M represent the gas constant, density of the membrane and

the number average molar mass of the chain lengths respectively.

According to experiment [20], it was found that C, increased

approximately in proportion to the absolute temperature, in accordance

with the statistical theory, while C, was substantially independent of-

temperature.

Thus we have nine equations (2.2-2.4) and (2.8) for the nine

unknowns X,, A,, N1, N1, p, n, K, K. and *. The system of equations

can be solved by various numerical procedures. Obviously for such a

4".
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large system of equations the process of computation is often quite

tedious and is not economical.

One method for simplification is to make the system of equations be

partially uncoupled, i.e. the system of equations is divided into

several small systems of equations independent of each other. The

general solutions are obtained by means of solving each small subsystem

of equations respectively.

Let us analyse the system of equations which includes ordinary

differential equations and algebraic equations. From equation (2.4) it

follows that

31n*o - (p'

K. K ( 1,n ), 1, 1

By substitution of above functions, equations (2.1) and equations (2.5)

into equations (2.3), we can make out that each of equation (2.3.1) and

equation (2.3.2) is a second order ordinary differential equation with

regard to variables p, n. Therefore, if we choose p, n as basic

functions, the system of equations is equivalent to a fourth order

ordinary differential equation involving p, n. Alternatively, if X1 , \j

can be chosen as the basic functions. Since X, is a function of p', n',

the system of equations is equivalent to a third order ordinary

differential equation after uncoupling.



11-12
U

For the reason, Yang and Feng E53] have simplified the governing

equations to a set of three first order ordinary differential equations

with explicit derivatives either in terms of X,, X2 or in terms of the

three new variables u,v,w defined as follows:

u(r) - (p'2 ' )z) 22

v(r) - P/r - Xa (2.11.2)

w(r) - p' (2.11.3)

Equations (2.6) can be derived by simple manupulations to the following

first order system

uZIZ' W f'3  W-v f2du (1 z'12 ) 2C-[ - + ] (2.12.1)
dr 1+z'2r f'

dv W-V (2.12.2)

-u(ul-w2) 2- ' (2.12.3)
dr u uvr 2

where

1 2"f T z" ,-N 1 - 2 (2.13)

Equations (2.7) are the basic equations of axisymmetric membrane

behavior in isothermal processes.

V..,
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2.2 THERMAL ANALYSES

In this section, we extend the theory of axisymmetric membranes in

isothermal processes to that in non-isothermal processes. Suppose the

temperature of the system varies from the uniform temperature T to a

new uniform temperature T. The difference of temperature definitely

affects the form of the strain energy function and the stress

-.,' resultants, but does not influence the equilibrium equations and

geometric relations. In order to derive the dependence of the -train

energy density function on temperature, we assume the material to be an

ideal elastomer. This postulate means that deformations of the membrane

are associated with changes in the configurational entropy of the

system, the internal energy being considered to remain unchanged [4,431

From the first law of thermodynamics, the change in internal energy

dU in any process is given by

dW dU - dQ (2.14)

where dW is the work done on the membrane by external forces; and dQ is

"-' the mechanical value of the heat supplied.

The second law of thermodynamics defines the entropy change dS in a

reversible process

dQ - TdS (2.15)

From (2.14) (2.15), it follows for a reversible process

dW - dU - TdS

W

r W r ~ * ,. ~~ ' *I* -*- ~ * %, * :~- - °
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- d(U-TS) + SdT (2.16)

- dA * SdT

where A is the Helmholtz free energy. Obviously, in a reversible
V,

isothermal process the change in the Helmholtz free energy is identical

with the work done by the external forces

dA - dW, ( constant T ) (2.17)

Therefore, for a reversible isothermal process the Helmholtz free energy

can be defined as the strain energy function.

In reversible non-isothermal processes, 8latz [4] considered the

membrane to be subjected to the following two steps of thermodynamic

deformations. First, the temperature of the membrane is changed from

T. to T. In this step, the membrane is stress free and no work is done

on it. The change of dimensions of the membrane is i.

S * T
i  io exp( To dT ) (2.18)

and

T4

V = V0 exp( 3fT a dT) (2.19)

where the superscript * represents the state of free stress; the

subscript . represents the state corresponding to the temperature TO;

1 is the length in any direction at temperature T; V is volume at

'-
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temperature T; and a is the thermal expansion coef ficient of the

membrane.

In the second step the membrane is deformed slowly and isothermally

into the final state under the mechanical loads. This step is an

isothermal process. The stretch ratios in the step are denoted as X

where - represents isothermal condition.

*- From equation (2.14) the increment in the internal energy is equal

4 ~to the heat energy TdS added in both steps plus the work done on the

membrane in step two:

dU - TdS + V W IdI (2.20)

where the subscript i in W represents the partial differentiation of

the strain energy function with respect to Ii. Letting T, It be

independent variables, we have
!*

dA- -SdT + V Widli (2.21)

Noting that

_* V (2.22)-- Wi  --

and a well-known property of partial differentials

a T(aA (2.23)
i T I I

we have

N,1

.. - .

;,,,+,,,, . . . ,,- .., ,+ , . ," • . - . .. '% . ' . . . . % .., ."-- .". . .'- " -" ."-" . ,. % . . •. . ,. .... i+ . - - -% . j ' .',
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From equations (2.20), (2.24) it follows thatP9

dU . dT + V[(1-3 4T)W - TW d i  (2.25)
aT I I

For an ideal elastomer

aU 0 (2.26)

Therefore, we obtain

T'diT( 1-3aT)Wi (2.27)

Equations (2.27) are a system of two linear second order partial

differential equations in the variables T, I1, I. The solution is

obtained by integration (See Appendix A)

W(II,IaT) - T-- ex(-3fT a dT) W(Ij,12,T0 ) (2.28)

W.

and

W(II,,To) l 0 (2.29)

with
~..

1* a I, a (2.30)

Equation (2.26) gives the relation between the strain energy

density functions at different temperatures T, To with the same strain

invariants.
Stm

I



Since no work is done in step one, Equations (2.11) can be used in

y ~~step two. Substituting equation (2.30)inoC21) we bai e

strain-stress relations

N 1  2h 0(: , (W I + XW 2 ) (2.31.1)

A2  12
N2  2h0(- - k=-) (W + 4 (2.31.2)

2 0A, XAA 1 I 2)

where -represents the isothermal process, i.e. step two. A

We define the total stretch ratios including the two steps as

i T
A1a - A1 exp(-fT a dT) (2.32)

Thus, equations (2.31) become

N1  2h (T; --17T) (W1  a aA. W2) (2.33.1)

X2 -2 2
N2h0( -4-a (W 4a A, W2) (2332

A a2

where

a - exp f T1 ctdT )(2.34)
T0

For the Mooney materialN.

W(11,I2,T) -C 1 (11-3) + C2 (1 2 -3) (2.35)



i

and equation (2.28) becomes

T0 TW - x(3f~ -T- oCol-)+C1(z ] (-6

where C,,, C2 0 are the material constants at TO; and

- 2 1
I a- X2+ -1-2 (2.37.1)

12 "-T =-T + (2.37.2)
X, X,

Equations (2.33) may be written in terms of dimensionless stress

resultants as

C(T) -- ) ( 1+ra-2Ax) (2.38.1)

a (20
N C() 1+ra 2 ) (2.38.2)

where

Nfil NI/2hoC (2.39.1)

N2 a N2/2h0 C1  (2.39.2)

r - C,2 /C1  (2.39.3)

C(T) - 'Ti ex(-34T a dT) (2-39.4)

The neo-Hookean material is a special case in which r is equal to

zero:

. .oS



W(ii IT) - C1C(T)(1 1-3) (2.40)

For this material the constitutive equations (2.33) are simplified

further to

N C(T) ) (2.41.1)

~~formulas for small strain (See Appendix B for further details)

2.3 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 2."

, , The objective of our research is to determine the deformed profile,.€

p. the displacements, and stresses of the membrane under mechanical and =

thermal loadings. From sections 2.1, 2.2 we already have the basic _
. equations for this objective. ""

We can start by solving for the variables u, v, w which are

a'a

• . concerned with the stretch ratios A1 , A,. If the form of the strain,-":-

N C(T (2.1.2)

If efc tion s aen ual, eua teine ro8 nauatibome the

the dspacernmetsand intesssotemmraeudelehnia n

thra lodigs Fro section 2.1 2 ..2 we alrad.hveth .bsi
eqaiosfr 1this objective.

We ca tr bysligfrtevrabe ,v hc r
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r/ (u'wz)1/ N2d_ -u(u,_Wa) 2( 2--- u--3 - (2.12.3)
-- U w N- uvrdr u N1 v 1",,

where

3N1  3N1  ,N-,(.3
f, f2 ll fj - N, - N2 (2".13)

The stretch ratios are obtained from equations (2.11) at once as

u - - -  7(2.42.1)(1+z'

A, - v (2.42.2)

Then we have the stress resultants from equations (2.33)

N..( a - ( W1 + a A, X. ) (2.33.1)

* A 6 _
a6

N2 - 2h0 ( -- ) ( W+ a AW (2.33.2) .
2 1 X, A 1 1 2)

.11

Finally the deformed profile can be obtained from equations (2.11)

p - Ar (2.43-1)

n .- /r (u- ) dr + no (2.43.2)
dronr0  .

Although there are nine equations (2.11), (2.12), (2.33), (2.41) and

(2.42) with nine unknown variables u, v, w, A,, X,, N1, N2, p, n, the

governing equations (2.12) only involve three first order equations

W
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which are uncoupled with the rest of equations. The rest of the

variables are easily obtained by algebraic or integral calculations.

In the formulation of the governing equations, the constitutive

relations are not specified but are in a general form of stress-stretch

ratio relations. The governing equations can be readily applied to

problems of different axisymmetrlo membrane structures if a suitable

constitutive equation for corresponding material is used.

Corresponding to the governing equations, there are three boundary

conditions in axisymmetric problems of membrane structures. Due to the

complexity of the boundary, it is often necessary to simplify these

boundary conditions.

If an end of the system is clamped by an inextensible cord, we have

a displacement boundary condition

4T
V1 zO- exp (0&dT) (2.44)

where a is the thermal expansion coefficient of the cord.

If the system has symmetry about a plane in the z direction, it is

necessary to consider one half of the system only. In this case, we

have the displacement boundary condition
_lzwI o -o (2o

W1 z-1 0 /2'0(.5

where 1 is the initial length of the system.
* 0

Sometimes we need to use a force boundary condition, for example,

the equilibrium condition of force resultant in the z direction. 4

..
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2.4 SIMPLIFICATION OF THE FORMULAE

As mentioned in the introduction, there are two ways to simplify

the formulas of axisymmetric membranes: an partially uncoupling method

and a method of reduction of the order of the system of ordinary

differential equations. Yang and Feng's method [53] is an uncoupling

one. In the present work, we reformulate by means of reduction of the

order of these equations.

Let us consider the equilibrium equations. They can be written in

the alternate form

d(pN )
N2  (2.46)

d( pN1 sin$)

dp

Equation (2.46) or equation (2.47), together with either one of

equations (2.3) can be regarded as the equilibrium equations.

The form of equation (2.46) and equation (2.47) hints that first

integrals may be obtained. If we can obtain one or two of the first

integrals, the order of the system of ordinary differential equations

will be reduced by one or two. The governing equations consisting of

three first order ordinary differential equations will be simplified to

two or even one first order differential equations. Obviously, this is

greatly helpful for the problem of axisymmetric membranes.

.



Unfortunately, we could not obtain the first integrals in a general

case. But if some restrictions which often are not critical are made on

the axisymmetric system, our objective can be reached.

We consider in great detail the following three cases.

CASE I. The pressure p is a given function p(p) of radius p.

For this condition, we choose equation (2.3.1) and equation (2.47)
"AU

as the equilibrium equations. Integrating equation (2.47), we have

PN1sino - G(p)+B (2.48)

where

G(p) f f p(p)pdp (2.49)

By using geometric relations, we have

2 2 1/2sin(O T (S? 2) /

sin.. .- .. (2.50)

and

P 21 /2
' Oz' ) (2.51)

Ile Substituting equations (2.50), (2.51) into equation (2.49), we obtain

p' " ±(.z' 2)I2 11 - - 2-2-- 1 (2.52)
NI P .'
N1

It is convenient to choose X,, X. as dependent variables. From equation

(2.2.2), we have

p'- )4rA 2  
(2.53)

O.

Combining equations (2.52), (2.53), and (2.33.1), we obtain

1~ 21/2 -

X2' --- {-X2±(1'z' ) I -r

" .,,. ,.:,..,.,..,.,-.;,,.................... ..,,....,..........,. ,.,%....,,,..,..,... ...,..
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(G( Ar) B) 12
- - ------ ----- -- I (2-54s)

X 62 2 2 -- a_ 2 -2.2 2
A2r h0 (V X2 -T-T) (W1 +a - 2 W2 )

where the + sign is chosen according as p is an increasing or a

decreasing function of r.

The other equilibrium equation (2.3.1) can be represented by means

of X1, XA also. Note that

dN I  aN1 dA ,  3NI _1 dr

dp 3A, dr 3ax di dp

Introducing equation (2.55) into equation (2.3.1), we have

f f 3
X A - C -_ X t _-

Sr(2.56)

where

1 3a' 2 =a 2  f3 1 N 2 (2.13)

In the case with the given function p(p), the governing equations

are simplified to a set of two first order ordinary differential

equations with explicit derivatives:

SAl 
= - [( + f2)A' + ) (2.56)

f1  A2  2 2 r

,.' k; • .I. {-k.,.( 1 +z 2) 1/2k,[ -:".

r4.

I
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(G( X2r)+B) 
2

112.

2 , --- 6 ------ (2.54)

4X2r h -- 3) (W +a x2W2
A1A 2

If the pressure p is constant, the governing equations become

- )X - f 2 (2.56)

r

I 2 2
(p2r 1/2

-------. 1 (2.57)
26 2 22 2h T) (W +a- 2 W202 hoT2 ,1 2.

XIX2

The constant of integration B depends on boundary condition. The

set of two equations (2.54) and (2.56) (or (2.56) and (2.57) as

p-const), with appropriate boundary conditions, can be solved by

.- standard numerical procedures.

CASE II. The undeformed shape of the membrane is a straight

circular cylinder.

Pipkin C32] discovered first that for initially circular membranes,

the equilibrium equation (2.46) can be integrated. For the Mooney

material, Kydoniefs and Spencer [21], and Wu [49] gave the integrated

results.

For convenience, we choose the principal stretch ratios X, , X2 as

basic variables. If w(X,, X., T) ( -W(II,I2 ,T) is the strain energy

)U. the strain-
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density function, then stress resultant equations (2.31) are derived to

(Appendix C)

-X -2 a2
h0 3

N 2h-- -:-)(W 1 XzW2 ) -T- 5a (2.58.1)

-2 a h0 aw
N 2 2h - = 2) (2.58.2)N2" 0h(- - T-)(WI~'* W2 ) - ax2  [

Substituting equations (2.58) into equation (2.46), we have

d(w

... . . (2.59 )

Note that

d(Aiwx) X wX dXi + Xjd(w X) (2.60)

From equations (2.59), (2.60), we obtain

d(w) = w dXi+w dA - dw (2.61)

Integrating equation (2.61), we have

W-A1 WAl! - A1  (2.62) ".

where A is an constant of integration.

This result takes a more complicated appearance when the strain

energy function is expressed as a function of strain invariants:

2X2 a)6  -22 (2.63)
W-2a2 (A _r)(W1+a X 2.-2  A 1

,%

" .
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Equation (2.63) is an algebraic equation involving the stretch

ratios A, k. which determines the functional relation between X1,, 2.

X1  X1" 2, A) (2.64)

% If p is an unknown function of p, the equilibrium equation (2.47)

cannot be integrated. But we can express it in terms of a differential

equation with respect to A,, A2 .

Substituting the geometric relations

K 1 2 - 2 2 1/2 (2.65.1)

2 2 1/2
i (A - r0 A )

K2  r0L, (2.65.2)

into the equilibrium equation (2.3.2) and letting A'-u, we have

lA - .z (2,66.1)

2 22 1 /2

-7--a JT](W1 a A2W2)r A[ A, (X,A)X,

2 2 21/26
CCL(X,,A)-r U ]I/  2 a 6 -22

-- £7T ---- 1 --- ---- 7EW1+a XCA2,A)W]11
rAA 102A,A) XI(X 2,A)A2

(2.66.2)

Thus, for initially circular cylindrical membranes, the governing

equations are simplified to a set of two first order ordinary

%

-e J%
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differential equations with the constant of integration A. The system

of equations is valid and exact for an arbitrary axisymmetric

distribution of the pressure p.

CASE III. Initially circular cylindrical membrane and given

pressure function p(p). 1
In this case, there exist two first integrals. Integrating

equation (2.46), we obtain equation (2.63)
6W-2a 2 (X,- -)(W +a -2 ) - A (2.63)

A 1 A1

or equation (2.64)

X,1 - XICA2, A) (2.64)

Integrating equation (2.47), we have
G(Lr) B N- i

sino - (---+- --------- - (2.67)

r~aCX)( a6 2rXCCT)(- 2- )(W AaW 2)

Noting the geometric relation

(2- 2 2 )1/2(A1 _r2Al*I/

3in. - (2.68) ..'

Equation (2.65) can be written

A(A 2 ,A) [G(Ar) +B
2  /2

r 2 A1(A2 ,A) 6 -

A2  A,(A 2 ,A)A,

(2.69) 1

A.%

" ' " " " " ' " -i ' -- .' % 2 .' ' ' '. .-' ' ' .' ' " " " "? .1 " : > - ." " .' " --. --' -"- -" " " " -" -" -. ' " - U" .'.i
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%"

The governing equations are simplified to a first order ordinary

differential equation with two constants of integration. p

If the pressure p is a constant and the membrane is made of the

4. Mooney material, equation (2.63) becomes ( Appendix 0

2 4 6_ -9
X( A +ra )+(3a xA1A )(lra X2)
----- 1 - A (2.70)

or

0 % 2 2 4 ' 4 2 4 2 6 4 2

C (A++ra ,)X-(A,-AX, ra )X -(3a +3ra X 2 ) - 0 (2.71)

where A is a constant of integration. 4

Regarded as a quadratic equation for X1, this equation has only one

positive root, so that

2 4 4.1 6 2 2 221/2
2 Xl 1-AX 2+ra [(Aj -AA 2 ,ra )12 .ra 2 ) I1/ 2

A, = - ------ - - - --I- --- - - -- - - - - - - - (2.72)

The governing equation becomes

(-i-pr + 11/2

.;.. r 2 6 2 -2 2
C A2C--------------------s c~ 2  2--- -. (C +C a X

(2.73)

The constants of integration A, B can be determined by appropriate

boundary conditions. The stretch ratio X, is obtained by integrating

°--

" % C.4%...e

I
+ " ' _ . ' ",+: ..",, . . _ ' _ .h, " , %'.'"' '-" "''l

",' " *
" v' ,?' +" '+,/',-. +" /', ,f .t.,. ,r _,,++, .. .+, .,,.+,+,,,,.,r'_ , . ... . .. .',
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equation(2.73) together with a boundary condition. Then the stretch

ratio X, Is calculated from equation (2.72).

For the neo-Hookean material, the basic equations have a simpler

form

22 1/ (2.76
X1 -- 1X2--A+C(X 2 -A) 2+12a-, 1 /} (.4

12

2Xr!~')}/ (2.75)r 2 X (X 2 A) a 6 2
C C X21 -------- f

X 2  X1(X2,A)Az

7V

S: 7
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C H A P T E R III

AN INITIALLY CIRCULAR CYLINDRICAL MEMBRANE

REINFORCED AT BOTH ENDS BY FLEXIBLE CORDS

Due to light weight and ease of erection in space, inflatable

systems are of interest for potential large space structures. Here we

consider a thin-skinned cylindrical shell reinforced by flexible cord-

like ribs as substructures of larger, somewhat more rigid systems, as

indicated in Figure 2. It is possible that this type of membrane

r structure may be deployed in space as a substructure of more rigid large

space structures In the near future. Since the membrane structure

consists of many of the same cylindrical modules reinforced by cords at

each ends, we only need to investigate one unit.

Suppose the undeformed configuration is a straight cylinder with

length 2L0 , radius r and thickness hO. The system is subjected to an

internal pressure p and an axial tension F. The stiffness of the cords

is assumed to be much larger than that of the membrane so that the

" deformations of the cords can be neglected. In an earth orbit the

system will be exposed to a wide variety of temperature. Due to the

symmetry of the system in the axial direction, we only consider a half

of the structure, shown in Figure 3.

The governing equations given in sections 2.3 and 2.4 are valid for

any strain energy function of an ideal elastomer. In this chapter, in

13
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1

order to present some numerical results, we assume that the cylindrical

membrane is composed of a Mooney material.

3.1 BOUNDARY-VALUE PROBLEM

First we follow the theory of section 2.3 to construct the

governing equations. We choose the axial coordinate z of the undeformed

membrane as the independent variable instead of the constant radius r.

The governing equations can be written in terms of the stretch ratios

By introducing the dimensionless quantities

z l z/r, Pa p/r, na 1n/r (3.1)

equations (2.2), (2.4) become

A1  " (a a)(3.2.1) .

2 - ~P (3.2.2)

2 ---- (3.3.2)

where the dot denotes differentiation with respect to za.

Substituting equations (2.38), (3.3) into (2.3) and letting

U p a pr/2hC 1

.%

• ,. .;.:': ;<?:......:..;:.. ;..:..;.: :'....:.. . .'....i. ?'. :::...:S:.. .v..>> :. .;.:. ... :: U;'
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we obtain the governing equations

r  3 a' a2]
(X'*X2 3a6) (1+rxz~a 2 ~ ll

(3.4.1)

XA (3.4.2)

,"(X2-i,2)(AA a'- (1 ra aXI )

----- ----------- ------------- -- - -...-

The boundary conditions can be written in the form *.
" 'zA -. lO" R/r - exp( J'T a dT ) (3.5.1I)

L -i -r0 (3 5.2)

--- A-- - ------- N- -A - F (3 .5.3)

* '2

Z. where R is the radius at z -0 after deformation. The third boundary

~condition corresponds to axial equilibrium. In terms of displacements

the third boundary condition has the following form

c( XA z- ,,)' / r (i f Ta [,.a ] .d 0 .F (3.6)

where

aA

(3".2
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F F(37)
a 4whorC,

It is more convenient for numerical computation to choose a

displacement boundary condition instead of equations (3.6). For

example, we can assume that

'Z- -0" (3.8)

Then the corresponding axial force can be obtained from equation (3.7).

Equations (3.4), (3.5) ( or either of (3.6) and (3.8) replacing

(3.5.3)) form the boundary-value problem for the determination of the

deformed profile of the system under mechanical and thermal loadings.

The stress resultants are given by equations (2.38).

This boundary value problem can be solved by standard numerical .

procedures. In this paper, we apply a shooting and matching method

which uses initial value techniques and a modified Newton iteration.

The parameters in the method may be, but need not be, the boundary

values; they may include the pressure p., the axial force FM , and the

ratio r of the material constants. One of the programs used is shown in

Appendix F.

The simplest way is to apply the simplified formulas in section 2.4

to the problem. From axial equilibrium, it follows (Appendix E) that -

B *F- 1 2

Thus we obtain the boundary value problem expressed by

;S ' .'-':,'-.' .-- :.-' -/ -. % - -
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. (P A2 P + 2F )2,-'.-
a (I 3 • 1/2

12-AI(12A)F -------------------------------AA
t7- I(z,)a 6 )2 -2 224C T) z( -- -- - - -v --- --T) (i.ra X 2 )

(3.10)

6%.- and

A 2 I.- A,.- exp(f TedT) (3.11.1)

A, 6 -2

p (A2 -1)+2 Fa=2 C(T) A 1% -a-T) (1+ra A2 ) (3.11.2)
A, A2

where

-f-A a ra *C(X-AA2 +ra4 ) 2*12a A2 (1-ra A2) J
,(,A)------- - ------ r ----- -- --- -- - ----- 1/2

2 X2 (1 + r a 2X)

(3.12)

This boundary value problem includes a first order ordinary

differential equation with an explicit derivative, two boundary

-. conditions, and a constant A. The two boundary conditions are applied

to determination of two constants ( constant A and the constant of

integration which will appear when equation (3.10) is integrated)

It is not difficult to solve the boundary value problem by the

shooting and iterative methods. The numerical methods are described

briefly as follows.

I'

pN

" U.

,U.
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If the pressure p , the axial force F the temperature T, and the

material constant r are given, we choose an estimated valie of tte _-j

constant A. Note that at z -O, we have from equation (3.12)

-2 6 4
(1*ra ) (3a -A1 o) + ra A,,

A - - (3.13)
A1.

Therefore, constant A really corresponds to the value A1 0 of the stretch

ratio X, at z -0. Integrating equation (3.10) by starting with the

boundary condition (3.11.1), we have numerical results on X2 as well as

X, from (3.12). Next, check the boundary condition (3.11.2) by means of

the results at zL 0 /r. If equation (3.11.2) is not satisfied, we guess

a new estimated value A ( or corresponding A1 0 ) and repeat the

computation until the condition is satisfied. Finally, X1 , X2 and A are

determined.

We may assume any of the parameters p , F , T, and r is unknown for

example p . The rest of the parameters and constant A are given. In

this case we have numerical values of X1, X1, p by means of the above

mentioned computational method. Similarly, any of F , r, T can be

chosen as a parameter to be determined. One of the programs we made is

given in Appendix G.

4. . • ...... . .. -. -. . . .°m.............. - " -.
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3.2 DEFORMED PROFILES AND DISTRIBUTIONS OF STRETCH RATIOS

The problem of an axisymmetric membrane which has an initially

circular cylindrical form and is attached to and sealed by a rigid plug

at each end has been investigated by Kydoniefs and Spencer [21] Wu

[49], Yang and Feng [53] Matslkoudi-Iliopoulou [25], and Lee E23].

Reference [53] investigated the special case in which pressure is zero.

The others imposed a special relation ( F-wrp ) between the pressure

and the axial force of the system. Our work removes these constrained

conditions and allows one to choose any arbitrary realistic values for

the pressure and the axial force independently. Moreover, none of the

previous works have considered changes of temperature. Therefore, those

works are special cases of the problem we investigated.

The factors influencing the deformations of the membrane include

the pressure p., the axial force F , the temperature T, and the ratio r

of material constants of the membrane.

Figures 4-6 are plots of the effect of variations of the pressure

P on the profile and stretch ratios for constant value of F., r, T.

As can be expected, the radius and stretch ratios of the deformed
60

membrane increase with increasing the pressure p a at the beginning. As

oV

. increases, p passes through a maximum and then decreases. Similar

phenomena have been observed in other inflation problems ( references

[1, 8, 15, 21] ). This shows the phenomenon of inflated instability of

II

p .
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the membrane. The problem of instability will be analysed in section

3.4 in detail.

The variation of the deformed profile and stretch ratios as the

axial force changes are given in Figures 7-9. Opposite to the case

C53], in which the pressure p is equal to zero, the radius of the

deformed profile increases with increasing the axial force. This is a

very interesting "barrel shape" phenomenon and can be qualitatively

explained as follows. When p.-0, the system is similar to a membrane in

the state of simple extension. As the axial force increases, the

dimension in the axial direction increases, while the other dimensions

acircumferential direction and thickness ) are correspondingly reduced.

This is the so-called "neck" C53]. If pa is not equal to zero, the

extension in the axial direction makes the thickness and the cross

sectional area in the central plane reduce and the total area of the

membrane increases. The thinner state of the membrane cannot resist the .

pressure. Finally, the membrane equilibrates in the state of a larger

deformation.

Another phenomenon worthy of note is that in a given condition, X,

is almost a constant value throughout the membrane, while the change of

X2 is much larger than that of A along axis z.* The condition is

important. The results show that as A. is less than 3 ( A2 is the

stretch ratio in the circumferential direction on the central plane ),

the change of X, along axis z does not exceed 15 percent of X1.

M
a.

k:U
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Obviously r is a quantity similar to the modulus of elasticity.

The radius p O and stretch ratios X, X. reduce with increasing ,as e

shown in Figure 10-12.

Figures 13-15 show how a change of temperature influences the

deformations of the membrane. The most important property is that ur.der

conditions of constant loadings the length and radius of the membrane

made of the Mooney material decrease on warming, and vice versa. In

other words, for the same distribution of the stretch ratios the

external loadings ( the pressure and the axial force ) increase as the

temperature is increased. This is a very interesting property of

nonlinear membranes made of the Mooney material (rubber-like material)

which has a characteristic opposite to other materials such as metals

and ceramics. We can qualitatively explain it as follows.

We imagine that the system achieves its final state by undergoing

two processes. The first, the system deforms under the external

loadings at constant temperature T The curve of configuration changes

from curve I to curve II in Figure 16. In the second process, the

temperature of the system under the same loadings decreases from T to
0

T. The influence of the change of temperature involves two sides. On

the one side, the change compels the system to contract. On the other

side, the Mooney coefficient C1 decreases as temperature drops (see

equation (2.10)). As shown in Appendix 8, C1 is a material constant

similar to the elastic constant. The system with lower "elastic

.--



p.
II- 4O

constant" does not equilibrate under the same loadings and is imposed a

state of larger deformations. Since the coefficient of thermal

expansion of the membrane is small and the change of temperature

influences the value of the material constant C1 strongly, the latter

dominates the second process. So, the system is deformed from curve II

to curve III as temperature drops. This phenomenon is similar to the

Gough-Joule effect [10, 13, 33] and is consistent completely with the

- theory of thermodynamics of the Mooney material. According to the

theory, deformations are associated with changes in the configurational

entropy of the membrane, the internal energy being considered to remain

• .unchanged [43, 54].

3.3 THERMAL STRESS RESULTANTS

In comparison with large deformations of membranes, the references
on the thermal stress state of membrane structures are few [6, 17, 33,

43, 54]. Most of them give only general principles or thermal analyses

of simple extension and compression.

,S Following the mathematical model given in Chapter II, we obtain

some results on the cylindrical membrane made of the Mooney material by

numerical methods.

Figures 17 and 18 show the relations between the pressure p and

the stress resultants. Here we see instability once again. For

moderate deformations, the stress resultants increase with raising

n
.'< ,
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pressure. When deformations exceed some limit, larger stress resultants

correspond to less pressure.

For values of parameters of interest in large space structures, the

influence of increasing the axial force on deformations and stresses is

shown in Figures 7-9, 19, and 20. We note that the stress resultant NI.,

in the meridional airection is approximately a constant throughout the

membrane as the stretch ratio X, in the meridional direction is small.

In Figure 19, for example, the change of N, for curve I is within 6.5

percent of the value at the end. Examining the corresponding stretch

ratio 1, in the meridional direction in Figure 8 and X2 in the

circumferential direction in Figure 9, we discover that X, is small

around 1.25 ) and approximately a constant, while the change of X. along
F.

the axis is very obvious ( 30 percent of the value at the end ). This

shows that as the stretch ratio X, is very small, the distribution of

stress resultant N1  along the axis has the similar form of distribution

with that of the stretch ratio 1, and N, does not obviously change with

increasing 12 along the axis. On the other side, in comparison of curve

1 in Figure 20 with curve 1 in Figure 9, Na and X. have the similar

form of distribution along the axis. These parameters are essentially

uncoupled between the meridional and the circumferential directions

under the condition of small deformations. '

.J'.

f* -, %'% % . %..-*-: o".' dj _?'w %, "r . " . i•% ., ' .' . . '" • . , " L . . &. - ' ,. %"
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The variation of stress resultants in meridional and

circumferential directions with temperature is given in Figure 23, 24. ?

In general, there exist even larger stress resultants in the meridional 7.

direction in the condition of a low temperature than in that of a high

temperature. Therefore, the membrane structure is easily destroyed when

overcooled.

The dependence of stress resultants on the ratio r of material

constants is illustrated in Figure 21, 22.

The maximum meridional stress resultant occurs at the end adjacent l

to the cord. The maximum circumferential stress resultant is

encountered in the centre symmetric plane. When the loadings (pressure

p and axial force F ) or temperarure T vary, the positions where N
aa

material is destroyed first are the centre symmetric plane or the end

adjacent to the cord.

3.4 INFLATED INSTABILITY

The problem of instability of a cylindrical membrane subjected to

uniform pressure and axial force has been considered many times in the

past. The excellent paper by Corneliussen anG Shield [6] gave a quite '

complete analysis of the stability of an inflated tube. Further results .

were obtained by Alexander C33, Shield [39], Fourney and Stern C123, and

Ratner [37). The above works only investigated a special case in which

they assumed no change in shape, i.e., the membrane is not only

' ; K - - , , , . J . " ,. - , "- , , , . " i . - -- S...
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initially, but is always a circular cylindrical tube. For the boundary

condition of being sealed at each end by rigid plugs, Kydoniefs and

Spencer C21] pointed out the existance of inflated instability of a

cylindrical membrane. Moreover, none of these studies considered the

effect of temperature on the instability in the circumferential

direction. In this section, we will analyze the characteristics, the

types, and regulation of the instability.

We consider the stretch ratio in the centre symmetrical plane in

the circumferential direction denoted by A,. From the numerical

results, we can plot many p -A2 functional relations for different

parameters. The function curves can be classified into three kinds, as

shown in Figure 25. Curve I includes two segments corresponding to

stable and unstable regions, respectively. Before achieving its maximum

value, the pressure p increases with A, rapidly. If paexceeds P max'

no equilibrium state exists at all and the deformations grow infinitely.

Curve III corresponds to a stable relation, and there exists no maximum

value of the pressure. Thus A, increases with the pressure p

monotonically. What is worthwhile to be noted is curve II. Here there

exist a maximum and a minimum value of the pressure p. Curve II Is

divided into three segments. Segments 1,3 correspond to a stable part,

and segment 2 is an unstable region. Let us imagine the process of

change of the equilibrium point. At the beginning, the equilibrium

point moves along segment 1 with increasing value of p . When the

t.
4"4

• ,,..r;.,.,,..,'.,. ',/ ,. ,......,", ., .... ", ",",.".. r ," , ., r (.' .'€ : #,, ,.. ,..-, , -, ', *, '.* , ' ,,... .. ., S,.,, .. , ... ,...,.
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equilibrium point passes the point corresponding to pamax' it jumps from

point A to B without moving along segment 2. In the inverse process, -.

the equilibrium point jumps back from C to D. Segment 2 corresponds to

an impossible state. This is the important jump phenomenon associated

with nonlinear mechanics.

The foundations of the theory of stability of the forms of

equilibrium is provided by the fact that a new adjacent, different form

of equilibrium is stable one, while the original form is unstable. The

loss of stability consists in the system passing to the adjacent form of

equilibrium, with any infinitesimal perturbation of the original form of

* equilibrium being sufficient to bring about the transition. However,

the loss of stability we found is not expressed as a transition to an

adjacent form of equilibrium, but to some completely different form. We

define the maximum value of the pressure pa as the critical value p cr"

At P =Pcr, curve I is of the type of infinite growth and curve II is the

.' "Jump" type C31].

Stability is influenced by three factors: the axial force F , the

ratio r of material constants, and temperature T. The influence of the

axial force F on the curve shape is shown in Figure 26. An increment
a

of the axial force F contributes to better stability in the

circumferential direction. If the axial force decreases, it is possible

I.

llEl

, . .., :.,, -:,-,...: .v:.:..-•;:..,,.,, , ,:, ,._..-.-. -- ..- .. , .. '" -"- . .'. '. . - . .. ".,.. ," .- .. ,: . .... .. .,'. - -'". .," "..



that the p -A2 curve is transferred from the stable curve III to the

unstable curve II.

Figure 27 represents the dependence of stability on the ratio r of

material constants. As the ratio r increases, the membrane becomes more

and more stable. For constant F and T, there exists a critical ratio

r . The instability phenomenon appears only below rcr .cr c

Figure 28 is a plot of the effect of variation of temperature on

stability. We discover that p or increases if the temperature T is

raised. However, the membrane which is stable at a low temperature may

become unstable at a high temperature.

The following qualitative conclusions can be obtained. If we

assume that only one of the three factors which influence stability of

the membrane changes (the other twc being held constant) then increasing S

the ratio r of material constants, or temperature T , or decreasing the

axial force F will make the critical pressure p increase. Raising

the temperature or decreasing the axial force F or the ratio r of

material constants probably takes the system from the stable curve I to

the unstable curves II or III.

3.5 AN APPROXIMATE PROCEDURE %

In the last section, we obtained the p C-'A relations from numerical

results and discovered some characteristics of inflated instability. It

2S

-?.-,".,," ".- :'-"," ' "{ .'" ') ')":'"- ;'" 'k." ')"-% ' ;' ; '-'" -;-i ;,; ;-; -5- -- .-, "., , . " - -
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is the most important to determine the critical pressure pcr as well as

the functional relationship of pcr with the factors: F , T, A.

If inflated instability exists, the governing condition for the

onset of the inflated instability is
dp

---.L (3.14)
dA2

Since we only obtained numerical results concerning the function

p(Ip (Aa), we cannot investigate condition (3.14) analytically.

A classical method of investigating instability is the perturbation

method based on a known finite deformation (see [6, 39, 45]). The

necessary condition using this method is that the finite deformation is

known at the beginning. For this reason the method is often applied to

the problem of small deformations superposed on a known finite

deformation. All of the papers mentioned above only investigated the

,* inflated instability in the special case in which the membrane before

and after a finite deformation has the shape of a given circular

cylinder. But the analytical solutions of the problem we are discussing

is not explicitly obtainable. Therefore, the method cannot apply

directly to the problem we are considering.

Here we derive a new approximate procedure which produces

approximate analytical solutions.

The equilibrium equations are rewritten in the form

N - E:~a.z.,2E1,~)2l/2(3.15.1)1 " 2psin " 21rp dn

4•°

WU

....,
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N N-- + --? a p (3.15.2)

1 2

where R1 , R2 are the curvature radii in the meridional and

circumferential directions respectively. Note that .P'I.

- .dp.21/2 "
R2 - 1+(qp)23/p (3.16)

We have

(+ 2 p'R

N - _-__R 2 -- _--  (2.17.1)1 22irp

^ R R F

N2  R _u.. .2)NI 2 (2.17.2)
p -r R1 (p -r

From the numerical results in section (3.2) we found that the

deformed profile is like a barrel-shaped cylinder. For the first

approximation, we now postulate that the meridian curve of the deformed

profile is a circular arc (see Figure 29). The equation of the circular

arc can be represented by

2 2
R - a2.~L(3.18)1 2;-,P)

where V represents the radius at z-LO . For simplification, we assume

that the deformation of radius p at z-O can be neglected, i.e. p Z.o-r.

At z-O we haveV

-9 2 2
R1  (3.19)

Differentiation of equation (3.18) yields

S.

.. . . .. . . . . . . .. . . . . . . -. A*
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dg . ..... ___ ... 320
dn R2 (Ln)21/2 (3.20)

From equation (3.16), we obtain
_ 2 2 -

*.. r2 UL2  '
R2 .{1+- 4 -.. 6 2 " - .1 R1 (3.21)

E(pr) 2(p.-r) (4Ln-2n -L ) L -

The equilibrium equations become 2!
+p -L 2 ,1

C& a
N -"{ 1+--- 

a. z
C( '1&2L2(9 -1)2(4r rl2r 1 ]/2

22'
.......p (3.22.1) "

4( .-,'1)

2 -* 1

2p N P L-a + a- C9. --- ---.. ..-- ---- ,
N2 - 1-- 2 2 2 /2

-. Ecli) +2L (p -W1 ) (4n&-2n 1)+L

21

CN1 ---F--. ) C-L ] (3.22.2)

CL a

where the dimensionless quantities are defined as

4L

-. -- A2, n( -D-, Loo --" (3.23)a r a r

Substituting equations (2.33) for the stress resultants, we have

A t 6 '
2h - 4 -)(W +a 2 :W2)

22 2 2
A2.9L M1 [(A-'1) 2L ]p'r

(A-I) +2L(A2,-1)(n(,2nM-1 )+L1/24]

.

at'4

U:
-w

*~~h ~ha - " *a
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(2.24.1) -.

2

2 6  -2  2 2 2NI

[ (A'- ) (A 1W' ) -2-

0 3 ( 1+aX2AA

hrA

2-2_

'4A A'L 1~

4(+2L 2 (A2-1) 2('4nn2ic-1L 4/

S( 22

.EN (A]) (3.24.2)

1 r (A 2-'1 2(A2.'

At n-L (n -[M ), equations (3.24) become

A i a 2 a 2 BP A';)'

22

At a 6  2F 2(A1 A

2A. .. 1

.1 .a W 2a -2
) - --- - - (3.25.1)* A2  A 'A2  1 2 2A2

"-
". N

A2  6 a
A2 -26 2A, 2Aj(A2 --i1) A,1  6

-3i (W +a -2A 2W2)~-------( - )
A1 AA 2  A2'-1 (A,.-,) +~L2 A A1A2

.(W +a A- (3.25.2)

t1 2 ) :1.-

AAz

p~~~ 1r~o F
4wh r

.'e / ,'' " "
° 

"" "" " " " .
"  

w ," " " '4 
'

-
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Because the function tgo is very complicated, an analytical result

cannot be obtained. Note that A, is almost a constant if deformations

are not very large, for example A, 3. We assume that A, is constant

along the axial direction and have

XL - A,, S - AIL 0  (3.27)

From the geometry of the circular arc, we have

L - R1 sin- ? (3.28)-
Rd

AILo
Expanding the right hand of equation (3.28) to the third degree in

and combining equation (3.19), we obtain

3L 5-3Lo AIL4+6(A -1) 2L 3_6Lo AI(AI-1) 2 L 23(Alml) 4L +

3L5 -'3 A1  2 224

2LOa A,(A 2 :0 2-3L 0A,(A -1) * 0 (3.29)

where

" - -L ( 3 3 0 ) ;
Oa r

Equation (3.25) and (3.29) with three unknown variables form the

governing equations in the approximate procedure. The assumed deformed

profile ( circular arc ) satisfied the geometric boundary conditions ( "

on A,). So, the function of the deformed profile is an admissible

function. The first of the equilibrium equation (3.25.1) is an exact

equation. Only the second equilibrium equation is satisfied

m°

- -!*_~~***%* ~ ~ ~ ~ ,,A.-L~'A .-.
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approximately. Therefore, we can predict that the error will not be

large.

We used a hybrid algorithm, which is a variation of Newton's

method, to solve the set of equations. One of the program used is shown

V. in Appendix H. The numerical results are close to those we expect. If

the membrane is made of the Mooney material, for F - 1 .391 , r-O.05,

S-1.0, the approximate solution is compared with the exact solution, as
0

shown in Figure 30 and 31.

Figure 30 shows the deformed profiles for pclO.94, 1 .03 by the

exact method and approximate method. When deformations are moderate,

3 the errors are very small. For example, for p,=O.94, corresponding

deformations are A 1 I.77, A,-1.4, L -1.67, while the approximate results

of the deformations are A,1-. 768, A2-1.398, L -I.706. The errors are

all less than 2 percent. When deformations are larger, for example

A,-2.139, Aa-1.T32, L -1.955, the errors of the approximate solutions
&.L

are in the usual range of allowable error and all of them are less than

9 percent. The functional relationship p (A.) from the two methods is

shown in Figure 31. We find that the approximate solution is very close

to the exact solution. The above results state clearly that the

approximate procedure is efficient for moderate deformations. Foster

[11), Wu [52] gave an approximate procedure for very large deformations

a.-
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A 2 ). Here, the approximate procedure we developed is just

complementary to their method.

The approximate procedure is based on two additional assumptions r7

(circular arc and constant XI) and the approximate expansion of equation

(3.28). The second additional assumption (A1 -const.) comes from the

calculated results C section (3.2)). For the first additional

assumption (circular arc), we give the following analysis.

From geometric relations, it is easy to derive

* dK2  - - ( K - K2) (3.31)

*d 12 X, 1 2

If the shape of the deformed profile is like a football being cut p
down the two ends, it is obvious that K2 KI, or R. R It follows that

dK2/dX* 0. Therefore, K21s a monotone decreasing function of A2. In

the central symmetric plane (z-LO), R2 reaches its maximum value. Let

us observe the equilibrium equations (3.17). Note that the part G in

the parentheses in the right of equation (3.17.2) is

R
G 4TrL *.7 (3.32)

At z-LO, if Aa-2 we have

a

.p .-,

%.

U°
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) 2 229

Since the function 2p /(P -r) reaches its minimum value at z-L, we

Ciri

2

p 2  . -, if A2S 2 (3.33)
p r

and

* R
T (3-34)

Obviously, 2P l(p -r 2 ) is the dominate part of the function G. If the

radius of curvature in the meridian direction is replaced by a constant

radius, only the minor term R 2/R is influenced. Thus, the replacement

of the deformed profile by the circular arc only produces a slight

effect in the second equilibrium equation and does not change the first

one.

.4. According to the above analysis and the approximate expansion, we

discover that the larger R is, the smaller the errors will be.

For a more accurate solution, we can use the perturbation method

based on the approximate solution.

The main advantage of the approximate procedure is that we can

Investigate the problem of inflated instability by means - analytical

expressions (3.25) and (3.29). We will discuss this ii. detail in the

,,xt section.

a.,

U " -,,' ,' 2 '% * , "% ". . % . -. ''""" , . , , - """"""" . , , """" . , , , , , . .- " ',," .. " '



I

II- 514

3.6 APPROXIMATE PROCEDURE: INFLATED INSTABILITY

The governing condition for inflated instability derived in the

last section is

p' 0 (3.14)

The difficulty of the problem investigated analytically is that we

cannot obtain the analytical expression p p(A 2). Many approximateCLL

methods, for example the Ritz method C30, 41], only yield numerical

results by numerical integral. The approximate method we developed has .

given a set of algebraic equations. From this set of equations we can

obtain the critical pressure p cr and the curves of pcr with variation of

any of the parameters F , r, T by means of the maximum principle.

We have the basic algebraic equations

2 -2p (A,,A,,L ) -2--[(Aj- - -r)(l+ra A )- ]( .3 . -.

A2 -1 AIA 2

A2  6 2A2F
f(A,,A,,L C1 (( aa)+--

2jA

2A2  2A2(A2 -1) A, a6 _ 2
A )2e.~-~4-~--M--- --)(1"ra A,2)-O (3.35.2)

A2nl (A2-'1) +L
2 A A1A2

f2 (A,,A 2,L )=3L
5-3L0 AIL 4 1(A2-', 2L3-6L A(A"1) 2L2 +"

1 a a a Oa a

3(A2-0) L +2LO 3A:(A,-1) 2-3LoAI(A,-1) ' 
4 0 (3.35.3)
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The variables A,,A,,L in the equation (3.35.1) are not

independent, but are interrelated by two constraint conditions (3.35.2),

(3.35.3).

According to the Lagrange multiplier method, we set T, Tzbe

multipliers and assume a new function

F p (A,,A2,L )+Tf (AAT YrfA,,A2,L (3.36)
p ~a CL 1 ' a 2(A zL) (.6

The necessary conditions for rendering F a maximum with no

constraints are

3FF 3F -.

-0, 0 -0 (3.37)

From equations (3.35)-(3.37) we obtain

6 A 6
-2 2+1-% - -- (l :. )l~ a2 )] x,[( - -4!7 -%) (1 'a- A1) +

A2-1 A1A, A1 AIA 2

p A2  6 A2  A2-%' 6
a' 6,"0 -t 3 OI I

A, A1 A2  A2 .-5 (A2 -13) +L ( A )A2

4 2 2 3 2 2_ 4TIC3L0 L -6L(A2-1) L CL+6L 0aA1 (A2") -3L Ot(A2 - 1 0

(3.38.1)

4A2  
6  6  "2a +r-2A 2 4ra-2A ) 2'

- i"[F -(A,, - ) (1) .- T--L-i.) ra A1 )
(A2'1)AjA 2  Aail AIA 2

2%

'( 6  ,I 3a 6  -2 i 
2F (A2*1)

*ra A2 (A1- -A A1) - -" A2,
,A 1A A A 2 (Aar,1)
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2 2_ 26
A2+1 L -(A2-1) 6 2

+ 2 -)--- 2 ](At- -_)(1.ra A.)
2 -)  ((A1 t1)2 ) A1 Aj

4a6 A2 A 2 -'l -,2 .2 ,

----------------- -------------- -1ir A2
AA 2 A2-1 (A2-) L

-2 A 2  A 1 t I 6 "

-4ra AJ-'9- .2 2 ](At" a)
A2 '-I (A2-1) +L AAz"

+*r[24(A2-1)L 3 12LoAO (A -1 )L +12(A2"1) 3L3a1. 2LO AI( A2- 1)

3 3

+4LO A(A 2 -1)) - 0 (3.38.2)

4L AA(Az219) A, 6  2 3
T [ (A )2 212 (-- - -)(l'ra A)I+ a[(15L -12Lo AI

-(Aaml) +L A2  AIA 2  A

+18(A 2-1) 2L2_12LA(A 2 i) 2L +3(A241) 0 (3.38.3)

From the five equations (3.38), (3.35.2),and (3.35.3), we can
determine the five unknown quantities: A ,A2 L , ,a . Then the

corresponding maximum per can be obtained from equation (3.35.1). If any

of the parameters: F , r, T varies, p or changes also. Thus we can

obtain the functional relations of Pcr with the parameters. From the -

functional relations, we can analyze unstable areas for the parameters.

We obtain the numerical results by means of the modified Newton's

method (one of the programs used is given in Appendix I). Figure 32

', . '_,,' p 7 '* .. *. /.p *p -' e*.J - -. . .. . - - .='.. ,.7 . .: > ,
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represents the functional relations of p r with axial force F at

0

T-293 K. We call the curves as the critical curves pcrnF for the

values of given T and r. For the points below a critical curve, the

system is stable, while for the points above the critical curve, the

system shows instability. If the axial force F increases, the critical

pressure pcr decreases. When the axial force F reaches a certain

value, the critical curve is terminated with a point. The value of the

axial force corresponding to the terminal point is called the critical

force F acr for the given T cnd F. If the axial force exceeds F cr,

there exists no instability.

The plane p cr-F can be divided into three areas, as shown in

Figure 33. Part III is an definitely stable area, which corresponds to

*the type of curve III in Figure 25. Part II is an unstable area, which

corresponds to the region on the right segments of the critical pressure

p on curve I and curve II. Part I is a stable area, which corresponds
cr

to the region on the left segments of the critical pressure P on curve

I and curve II. There are different critical curves for different r and

T. For example, curve I and curve II in Figure 32 correspond to r-0.02,

0.05 respectively. We discover that the critical axial force F
acr

decreases and the definitely stable area, part II, is enlarged as the

material constant r increases. That means that the system is getting

more and more stable with increasing value of material constant .

% % .
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The dependence of the critical pressure por on the ratio r of

0
material constants is illustrated in Figure 34 at T-293 K. For a given

value of the axial force, the critical pressure increases with increment

of the ratio r. Similar to Figure 32, there exists the critical ratio

I'r and the plane pc 19r can be divided into three areas. If the axial.:

force increases, the definitely stable area is enlarged, but the

critical pressure pcr decreases for the same material constant r.

.A
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

The objective of this study has been to develop a theory of

axisymmetric membranes under combined mechanical and thermal loadings

and to investigate the behavior of their deformations, thermal stresses,

and instability. A mathematical model is established on the basis of

the theory of nonlinear membranes and thermodynamics. The nonlinear

relations of deformations and thermal stresses with loadings (p , F1, T)

and the material constant r are represented by the mathematical model.

We discover that the mathematical model can be simplified in some

cases. The keys for simplification are to make the set of governing

equations be uncoupled by means of an appropriate choice of variables

and to make use of the first integrals if they exist. For a given p(p),

the governing equations are simplified to a set of two first order

ordinary differential equations. For an initially circular cylindrical

membrane, the number of the governing equations is reduced to one.

Due to the nonlinearity of the governing equations, not only is the

numerical computation complex, but also it is difficult to Investigate
the problem of instability. Therefore, we developed an approximate

procedure for moderate deformations. The results we obtained indicate

that the approximate method is useful for investigation of deformations,

thermal stresses, and especially instability.

For an initially circular cylindrical membrane, we gave numerical

p 11-59
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results. The loadings (p., Fab T) and the material constant r exist a

strong influence on the nonlinear deformatioms, the thermal stresses,

and the instability

There are some interesting phenomena for finite deformations of

nonlinear membranes made of the Mooney material, such as contraction on

warming, "barrel-shape" phenomenon as the axial force increases, nearly

constant stretch ratio in meridional direction, etc. All of these

phenomena should be noted for applications of axisymmetric membranes.

Stress concentration is a considerable problem. The numerical

results point out that the maximum value of meridional stress resultant

exists near the cords, while that of the circumferential stress

resultant exists on the centre symmetrical plane.

Instability of membrane structures is a very serious problem.

There exist two types of unstable phenomena. In the case of small r,

small F , and high temperature T, there exists a critical pressure pcr

If the pressure p is exceeded, the membrane structure will inflate

boundlessly until it is destroyed. The other unstable phenomenon is the

jump phenomenon which is in important property of nonlinear system.

We investigated instability. According to the behavior of the

inflation curves pa -JA, the state of the system in stability can be

classified into three types. Some important concepts, critical curve

and critical parameters, are presented. The effect of variation of

1z'
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parameters on the unstable areas are discussed by means of the

approximate procedure.

We paid attention to the influence of temperature on membrane

structures. In general, decreasing the temperature makes deformations

and stress resultants increase such that the system is destroyed ever

more easily, while increasing temperature possibly transforms a stable

system into an unstable one.

Further studies are recommended in the following areas:

1. Effect of thermal gradients on the nonlinear membrane.

In this dissertation we assume that the temperature of the membrane

is uniform at any moment and varies slowly with time. This is just the

Sfirst approximation to a practical case. In fact, even when a membrane

structure is in sunlight, the side toward the sun is at a significantly

higher temperature than the side away from the sun. The nonuniform

distribution of temperature may give rise to thermally induced

deformation, possible skin buckling, and overall distortion. It is very

difficult to develop an expression for the membrane with a nonuniform

distribution temperature. The difficulty comes from loss of

axisymmetry. As the first step, one could consider a small deformation

"- induced by the thermal gradients superposed on the known finite

deformation studied in this dissertation.

. 2. Oscillations of membrane structures.

"'p



Ii

'02.II- 62

Membrane structures will oscillate under external excitations, for

example thermally induced oscillation. This may cause anomalous motion

of the system.

As the first step, we can assume an axisymmetric problem. The

natural frequencies and modes could be obtained by numerical methods.

3. Wrinkling

Wrinkling is a important phenomenon in instability which often -.

appears in thin membrane structures. A wide variety of temperature

occur in space and also membrane structures could have complex boundary

conditions which correspond to various types of attachment. In this

case may lead to wrinkling.

Wrinkling of thin membranes in a constant temperature was studied

by other authors before C24, 35, 49, 50]. The theory has to be extended

to non-isothermal processes. The first step is to develop a new

formulation.

4. More accurate constitutive relation.

The Mooney equation is only the first approximation to constitutive

relations of rubber,-like material. We also discovered in our study that -
* .9

the solution is very sensitive to values of the material constant r in

the Mooney equation. A realistic solution may require some more a-

accurate constitutive relations.

4P-
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APPINDIX A

DERIVATION OF EQUATION (2.28)

Equations (2.27) can be written as

TI. aW .(A-)

1,2W a-
TT4-(1 -3,,T) 5f (A-2)

Integrating equations (A-l), (k-2) with respect to T from T. to T, we

obtain

W I - exp(-3f a .. (A-3)

-I TeWTxp(al T -351o a T) , "UAIA&I= (A-4)

T To a"x-

Equations (A-3), (A-4) are a system of first order partial

differential equations. In order to solve the equations we integrate

equation (A-3) first from I, to I, at constant I.

* ' * T 3 T 5
W(T,I,I) - W(T,I ,I1 ) = E exp(-3M c dT) .-

[W(ToI,,r,) " W(To,I,I:)] (A-5)

Then integrating equation (A-4) from I to I at constant I, we have

* T IT

W(T,I1,Ia) W(T,I,I) l r exp(-3fT dT)

[W(To 1 ,11 ) - W(ToIiI:)] (A-6)

Note that

11-70 U

..



I

1- 1

W(To,,11) - W(T,I,I) - 0 (A-7)

Combining equations (A-5), (A-7), we obtain

Tb
W(T,Il,12 ) - 1 exp(-3f% T dT) W(T0,I,I I (A-8)

To--
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APPENDIX B

FORMULAS FOR SMALL STRAIN

The initial length elements in meridional and circumferential

directions are denoted by lia, l1 respectively, the length elements

after expansion of free stress 11, l., the final length elements l, 12.

Similarly, el , c2 represent the strain after expansion of free stress,

el, e. the final strain. If thermal expansion coefficient a and strain

€I are small, the terms of the second order and more than two of , i

can be neglected. Therefore, we have

exp(?-fT a dT) - 1 - aAT (8-I)

A, - 11/,I-( (I+(A ) (-aAT) (B-3)

A2 " (1-+e) (1I'mAT) (M-4)

The factors of equations (2.33) can be written as

A- -- - 4c1 2c,-6a&T (B'-5)

'" ~n-~-2e1*4c2-6aAT MB-6)

| ll

,',C,'2 - = 2 c, €-6AT (B-6) ,

.V
Ca'C=I =b 11-b T(B7

4 z -7
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C1 C2 X1 - bj~b2c1 -b2cLAT (B-8)

where

b, C1 C2  b2 a 2C2  (B-9)

Substituting equations (B-1), (B-5)-(B.-8) into (2.34), we have

a, a,(2e1 e,-3aAT) (B-10)

a2 aj(e& 2e2-'3aAT) (B-11)

where

a, - 4b, (3-12)

The classical relations between strain-stress for small

deformations are

E EaAT ('-3
a, - --- (cI€, e1) ,.1 ' - (B-13)

Considering incompressibility of material

.z+cs- 0 (B-15)

we obtain u-0.5. Therefore, equations (B-13), (BE-14) become into

a1 t (2c 1 2*-3aAT) (B-16) 2.

(317

a2 E- (e1+2ea-3aAT) (B-17)

In comparison of equations (B-10), (B-11) with equations (B-16), "

(M.-l17), we discover that 5".

E 6(C1 Cz) (3-18)

'5
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APPENDIX C

OKRIVATION OF STRESSASTRAIN RELATIONS

We consider a square element of a membrane with thickness h'"
-

length and width 1 before deformations. The element in the deformed

state has lengths A,, A, and A,h of the sides. Let f be the force
0i

acting on per unit deformed faces; N the resultant force per unit

length in the deformed state; w(A,,a) the strain energy function per

unit undeformed volume. From the virtual work principle, the work done

in an Infinitesimal displacement from A to A idA 1 is

dw - f dAI, f 2 dA

NI  - N2, -,..1 2

---- =-dA --=-_-d; 2  (C.1)

Due to incompressibility, equation (C.1) can be rewritten

, - -- dAI + -.. dX (C.2)

0 0
*.." .'o

From the above equation, we have ',"

ho a3w hO aw

N1 - 9- , N2 - -- (C.3)

A3A,, A, ~ax

If the strain energy function is expressed as a function of strain
'.F

invariants, we have
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h0  31 1 W. H12
ai 3W 1 3W ( C." 4.

11 ax 2 3k2

1 2
1 3k2  2 (C .4.2

31
1..

Calculating -=, (ij-1,2) from the representations of strain invariants

* and noting equation (2.32), we obtain equations (2.58).
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APPENDIX D

DERIVATION OF EQUATIONS (2.70) AND (2.71)

Combining equations (2.28), (2.35) and (2.63), we can obtain --

equations (2.70) and (2.72) easily, where

aT0

A = -A1  (D.1)

Equation (2.70) can be obtained from equilibrium equation (2.46)

and constitutive equations (2.38) also. By substituting equations

=" (2.38) into equation (2.46), we obtain by simple manipulation

ACXX2 " 3a 6 2' 'a (IAA:+3a 2 ]d,2  ,,

~ 2 4~

6 4 2 6 . SA 2C3a X,- Axxra (a AX.X:AX)]dA2 " 0 (D.2)

Equation (D.2) has an integrating factor A, A and after

multiplication by the factor it becomes

2 2 6 ( ) 2 2 4 _2 4 _
d(A-A 2)-3a d(Xaxm2 )+ra d(XAA 2)-3ra dl, -Fa dA2 -0 (D.3)

Integrating the above equation and rearranging the result, we obtain

2 4 6 2. .2
A(x +ra )e-(3a , x x )(l.ra' X.)

-..-- - A (D.4)
A1A2

This is just equation (2.70).
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APPENDIX E

DETERMINATION OF THE CONSTANT OF INTEGRATION B

The equilibrium condition in the axial direction can be expressed

in the following form

2wA2rN1 jza = - F + f2rpp cosodS (E. 1)

Noting that

cos - (E.2)

dS

and p-const, we have

AIN I za.L F -- prA1- 2r- 2 (E.3)

At z =L , equation (2.67) can be written in the form-

Q a
A21za'La B/rlE.i

Thus, we obtain

F 1 2 '"

B - - 1 2 (E.5) '

1.
"
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APPENDIX F

PROGRAM4 1

0001C LRGESPACE STRUC., YUoo,, P-PARAM(3), C3-O0

00020 PROGRAM LSS(INPUT, OUTPUT, TAPE1-INPUT

00030 DIMENSION C(3,11), PARAM(3), ERROR(3), PARERR(3), W(3,3'4),

00040+ QT(5),DL(11 ),Rl(ll),Fl( 11),D(3),FUN(3)

00050 COMMO0N QT,C1,C2,FA,RO,PN,SPA,QY8,C3

00060 EXTERNAL AUX, BCAUX, RNAUX, AUF, PROFILE

00070 DATA NOUT/6/ I
00080 CALL XO4AAF(1,NOUT)

00090 CALL XO4ABF(1,NOUT)

00100 TO-293.0

00110 RO-1.0

U 00120 HO0o.03

001 30 MC-4

00140 DEN-940.0

00150 RC-8.31

001 6OCPN-0.0

00170 N-3

00180 N1-3

00190 Iw-34

00200 Ml-11

00210 PARAM(1-2.35

&o

I 11-79



ii 0

io
00220 PARAM(2)-2.71

10230 PARAM(3)-0.00210

00240 PARERR( 1 i.OE-8

h. 00250 PARERR(2)-1 .OE-8

00260 PARERR(3)-1 .OE-8

00270 ERROR(l)-l.OE-8

00280 ERROR(2)1I.OE'8

00290 ERROR(3)-l.OE-8

00300 T1-343.0

00310 WRITE(NOUT,116) Ti

00320 CM-O.5*RC*DEN/FLOAT6(MC)*1 .OE-6

00330 ClUTO*CM

00340 C3-0.06

00350 C2-C3*Cl

00360 WRITE(NOUT,104)C1 ,C2

00370 FA-150.0

00380 CALL AUF(QT, TO, Ti, HO)

00390 WRITE(NOUT,108) (QT(I),I-1,5)

00400 Do 81 11-1,7



004110 SPA-2.±1

00420 SPA-SPA-FLOAT(I11)*0.2

004130 WRITE(NOUT,111) SPA

0044±0 IFAIL-001

004150 CALL DO2HBF(PARAM, NI ,PARERR, ERROR, N, C, Ml, AUX,

004160+ BCAUX, RNAUX, W, IW, IFAIL)

004170 IF (IFAIL.EQ.0) GO TO 11

004180 WRITE (NOUT, 110) IFAIL

00±190 IF (IFAIL.GT.5.OR.IFAIL.EQ.1) GO TO 31

U 00500 WRITE (NOUT, 120) W(1,2), (W(I,1),I-1,N)

00510 GO TO 31

00520 11 PM-582.5*PARAM(3)

00530 WRITE(NOUT,125) PM

005410 WRITE (NOUT,130) CPARAM(I),I-1,N)

00550 WRITE(NOUT,14O)

iz- 00560 CALL RNAUXCX,X1,PARAM)

00570 H-(X1-,X)/FLOAT(M'-1)

00580 DO 21 I-i ,Ml

00590 DUM-X.FLOAT(1-1 )*H



11- 82

Ui
00600 WRITE(NOUT, 150) DUN, (C(J,I),J-1,N)

00610 21 CONTINUEI00620 Do 61 I-i ,M1

00630 F1(I)inRO*SQRT(C(1,I)**2,C(3,I)**2)

00640 R1(I)-C(2,I)

00650 61 CONTINUE

00660 WRITE(NOUT,115)

00670 CALL PROFILE(RO,H,C,Ml,DL,F1,PARAM(3))

00680 DO 41 I-1,Ml

00690 DUM-X+FLOAT(I-1!)*H

* 00700 WRITE (NOUT,160) DUM,R1(I),DLCI)

00710 41 CONTINUE

00720 WRITE (NOUT,170) -

00730 DO 55 I-i ,Ml

00740 DIM-XFLOAT(Iml)*H

00750 TN1.QTC5)*(C(1,I)/CC2,1).QT4)**6/C(1,)**3/C(2,1)**3)

00760+ *(ClC2*C(2,I)**2*QT(4)* 0C2))*58.25

00770 TN2-QT(5)*(C(29I)/C(1,I)-QT(4)**6/C(1 .I)**3/C(2,I)**3)

00780+ *(ClC2*C(1,I)**2*QT(4)**Cm2))*58.25



00790 WRITE (N0UT,160) DUM,TN1,TN2

00800 55 CONTINUE

00810 PARA3-1.0-QT(4)*6/C(1,1)**4/C(2,1)**2

00820 PARA4-SQRT(C(1,1)**2-C(3,1)**2)

00830 PARA5-C1.C2*C(2,1)**2*QT(4)**(-2)

00840 FC..9.27*2.o*3.1 415927*QT(5)*ROPARA4*PARA5*PARA3

00850 WRITE(NOUT.109) FC

00860 FB-0.0185J4*3141.5927*C(2,M1)*QT(5)*(C(1,M)/C(2,M)QT(4)**6/

00870+ C(l,ml)**3/C(2,Ml)**3)*(Cl+C2*C(2,Ml)*2*QT(4)**(-,2))

00880 WRITE(NOUT,185) FB

00890 31 CONTINUE

* 00900 81 CONTINUE

00910 91 CONTINUE

00920 101 FORMAT(F8.4)

00930 100 FORMAT(4(1X/),20H LSS PROGRAM RESULTS/1X,3F12.4)

00940 104 FQRMAT(1X,4H Cl-,F8.4,6X,4H C2-,F8.4)

00950 106 FORMATC2(lX/),4H PN-,F8.5,/1X)

00960 108 FORMAT(1XH QT(I)-,/1X,5F12.5,/1X)

00970 109 FORMAT(3X.5H FA-n JF1O3)

% %,
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00980 110 FORMAT(4X,9HOIFAIL - , 13)

00990 111 FCRMAT(1X,8H G1(2)-,F6.3)

01000 115 FORMAT(4X,30H X-VALUE PROFILE OF STRUC.)

01010 116 FORMAT(3(lX/),4H T1-,F8.2)

01020 120 FORMAT(1OH W(1,2) - , F9.4, 10H W(I,1) -

01030+ 3E10O-3) '

01040 125 FORMAT(2X,5H PN-,F8.5) '

01050 130 FORMAT(4X,17HOFINAL PARAMETERS/IX, 3F10.5) ' 4

01060 140 FORMAT(4X,15HOFINAL SOLUTION/4X,

01070+ 35H X,VALUE COMPONENTS OF SOLUTION )

01080 150 FORMAT(IH ,F10.5,3F10.5)

01090 160 FORMAT OH ,F1O.5,2F10.5)

01100 170 FORMAT(4X,24H X,4VALUE STRESS)

01110 185 FORMAT(3X,5H FB- ,F1O.3,/1X)

01120 168 FORMAT(1X,4F12.8,/1X)

01130 169 FORMAT(1X,3F10.5)

01140 END

01150 SUBROUTINE AUX(X, Y, F, PARAM)

01160 DIMENSION Y(3),F(3),PARAM(3),QT(5)

4 5

_El
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01170 COMMON QT,C1,C2,FA,R0,PN,SPA,QY8,C3

01180 QXinY(1)**2-Y(3)**2

01190CIF(QX.GE.0.0) GO TO 15

0 1 200CQY1 -0. 6

01210CGO TO 25

01220 QY1-SQRT(QX)

L 01230C25 CONTINUE

01240 QY2-1 .O.C3*Y(2)**2*QTC4)**(-2)

01250 QY4iY(1)**4*Y(2)**2+.O*QT(4)**64

01260 QY3-1 .O.C3*y(1)**2*QT(4)**(-2)

01270 QY6-Y(1)/Y(2)-QT(4)**6/(Y(1)**3)/(Y(2)**3)

01280 QY7-Y(2)/YC1)O~QT(4)**6/(YC1)**3)/(Y(2)**3)

01290 QY8-1.0/Y1)-.3.0*QT(4)**6/Y(1)**3/Y(2)**4-C3*yC1)

01300+ *QT(4)**(.-2).-C3*QT(4)**4/Y(1)/Y(2)**4 4

01310 SlmY(1)**4*YC2)**3*Y(3)/QY4/QY2*QY8

01320 F(l)-S1

01330 F(2)-Y(3)

01340 F(3)uS1*Y(3)IY(1),QX*QY3*QY7/QY6/QY2/Y(2)

01350. -I1.0#PARAM(3)*RO*Y(1 )*QYI/QT(5)/Qy6/QY2/C1
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01360 RETURN

01370 END

01380 SUBROUTINE AUF(QT,TO,THO)

* 01390 DIMENSION QT(5)

0140OCCOMMlON QT(5)

* 01410 ALPH1B(T)-2.38*1 .OE 15+TANA*(T-TO)

01420 ALPH2A(T)u13.7T1 .OE.-54(T-,253.O)*TANC

* 01430 ALPH2B(T)-(T"163.0)*TAND

01440 TANA-(2.38-1.0)*l.OEi-5/130.0

01450 TANC-(40.3-13.7)*1 .OE-T

4' 01460 TAND-(13.T*1.OE-5-20.O*TANC)/70.O

01470 IF (T.GE.293.0) GO TO 10

01480 QT(1)-0.5'(T-TO)*(ALPHlB(T).ALFA1B(T0))

01490 GO TO 20

01500 10 ALPH1A-2.38*1.0E-5

01510 QT(l)-ALPH1A*(T-T0)

*01520 20 IF (T.GE.233.0) GO TO 30

01530 QT(2)-0.5*(T'-233.0)*CALPH29(T)+ALPH2A(233.0))

01540+ -(TO.ib233.0)'CALPH2A(TO).ALPH2A(233.0))



01550 G0 TO 40

01560 30 QT(2)-0.5*(T-TO)*(ALPH2A(T).ALPH2A(TO))

0157 40 T(3)EXP(T~l)

01570 40QT(3)-EXP(QT())

01590 QT(5)-2.0*HO*T*QT(4)**(-3)/TO

01600 RETURN

01610 END

01620 SUBROUTINE RNAUX(X,X1,PARAM)

016310 DIMENSION PARAM(3)

01640 X-0.0

01650 X1-1.0

01660 RETURN

01670 END

01680 SUBROUTINE BCAUX(G,Gl,PARAM)

01690 DIMENSION G(3),G1(3),PARAM(3),QT(5)

01700 COMMON QT,C1,C2,FA,RO,PN.SPA

01710 G(l)-PARAM(l)

01720 G(2)-QT(3) p.

S 01730 ZL-G(1)**2-(FA/1000.0/2.O/3.1i415927/QT(5)/(1.0O-QT(4)**6



01740+ /G(1)**4/G(2)**2)/(Cl.C2*G(2)**2*QT(4)**(-2)))**2

01750 G(3)-SQRT(ZL)

01760 Gl(l)-PARAM(2)

01770 G1(2)-SPA

01780 Gl(3)-O.0

01790 RETURN

* 01800 END

01810 SUBROUTINE PROFILE (RO,H,A,M1 ,DL,F1 SPAR)

01820 DIMENSION DL(Ml),Fl(M1),QTC5),A(3,Ml)

01830 COMMON QT,C1,C2,FA,S0,PN,SPA

01840 DL(1)-O.0

01850 DO 51 I-2,M1

01860 DL(I)-DL(I-1).H/2.0'(Fl1-1).F1(I))

01870 51 CONTINUE

01880 RETURN

01890 END
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APPENDIX G .-.

PROGRAM 2

00010C LARGE SPACE STRUC., YU020, P-PARAM
00020 PROGRAM LSS(INPUT, OUTPUT, TAPEl-INPUT )

00030 DIMENSION C(1,11), PARAM(I), ERROR(I), PARERR(O), W(0,28),

00040 QT(5) ,DL(11) ,RI(11) ,F (11),CX(11),CY(11)

00050 COMMON QT,FA,P,C3,A

00060 EXTERNAL AUX, BCAUX, RNAUX, AUF, PROFILE, SRM

00070 DATA NOUT/6/

00080 WRITE(NOUT, 100)

00090 CALL X04AAF(I,NOUT)

00100 CALL XO4ABF(I,NOUT)

00110 TO-293.0

00120 FA-i.4

00130 N-1

00140 Ni-i

* 00150 IW'-28oolo mi -ii
00160 Mi-li.... -

00170 PARAM(i)-2.0 ,

00180 PARERR(1)-I.OE.8

00190 ERROR(1)-1.OE-8

00200 T1-293.0

00210 C3-0.05

11- ..-
II- 89
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4 00220 WRITE(NOtJT,110) TI, FA, C3

00230 CALL AUF(QT, TO, Ti)

00240 WRITE(NOUT,130) (QT(I),I-1 ,5)

00250 Do 81 11 -1,l15

00260 SPA-2.0

00270 SPA-SPA.FLOAT(11 )*O.2

00280 A-((1.0+C3)*(3.O-SPA**4)+C3*SPA**2)/(SPA**2)

00290 WRITE(NOUT, 140) A

00300 IFAIL-001

00310 CALL DO2HBF(PARAM, N1,PARERR, ERROR, N, C, Ml, AUX,

00320+ SCAUX, RNAUX, W. IW, IFAIL) 4

00330 IF (IFAIL.EQ.0) GO TO 11

00340 WRITE (NOUT, 150) IFAIL

00350 IF (IFAIL.GT.5.OR.IFAIL.EQ.1) GO TO 31

00360 WRITE (NOUT, 160) W(1,2), (W(I,1),I-1,N)

J 00370 GO TO 31

00380 ii WRITE(NOUT,170) P

00390 WRITE (NOIJT,180) PARAM(1

00400 WRITE(NOUT,190)

00410 CALL RNAUXCX,X1,PARAM)

00420 H-(X1-X)/FLOAT(M1M1)

00430 DO 21 I-i ,Ml

00440 DUM-X.FLOATCI-1 )*H

00450 CALL SRM(CX(I), C(1,I), QT(4), C3, A)



4-1. VT-01T 1I _'rr - -rF ' 31 TV _ - -%L --

00460 CALL AUXCDUM, CC1.I), CY(I), PARAM1)

00470 WRITE(NOUT, 200) DUM, CXCI), C(1,I)

00480 21 CONTINUE

00490 DO 61 1-1 ,Ml

00500 Fl(I)-SQRT(CX(I)**2A~CY(I)**2)

00510 Rl(I)-C(1,I)

4.00520 61 CONTINUE

00530 WRITE(NOUT,210)

00540 CALL PROFILE(H,M1,DL,F1)

00550 DO 41 I-i ,M1

00560 DUM-X+FLOAT( I-'1 ) H

1 00570 WRITE (NOUT,220) DUM,R1(I),DL(I)

C0580 41 CONTINUE

00590 WRITE (NOUT,230)

00600 DO 55 1-1 ,Ml

00610 DUM-X+FLOATI,,1 )H

00620 TN1UQT(5)*CCX(I)/C(1,I).iQTC4)**6/CX(I)**3/CC1,I)**3)

00640 TN2-QT(5)*(C(1 ,I)/CXCI)-QT(4)**6/CX(I)**3/C(1 ,I)"3)

00660 WRITE (NOUT,220) DUM,TN1,TN2

4R 00670 55 CONTINUE

00680 31 CONTINUE

00690 81 CONTINUE
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00700 100 FORMAT(4(IX/) ,20H LSS PROGRAM RESULTS/lX,3Fl2.4)

00710 110 FORMATC3(1X/),4H T1-,F8.2,4H FA-,F8.4,7H GAMMA-,F8.4)

00720 130 FORMAT(lX,7H QT(I)-,/lX,5F12.5,/1X)

00730 150 FORMAT(4X,9HOIFAIL -,13)

00740 140 FORMAT(1X,4H A-,F8.3)

00750 160 FORMATC1OH W(1,2) -,F9.4, 10H W(I,l)-

00760+ 3E103)

00770 170 FORMAT(2X,4H P-,F8.5)

00780 180 FORMAT(4X,17HOFINAL PARAMETERS/lX, 1F1O.5)

lb00790 190 FORMAT(4X, 15HOFINAL SOLUTION/4X,

00800+ 35H X- VALUE COMPONENTS OF SOLUTION)

00810 200 FORMAT(lH ,3F10.5)

00820 210 FORMAT(4X, 30H X-VALUE PROFILE OF STRUC.)

00830 220 FORMAT O1H ,F1O.5,2F10.5)

00840 230 FORMAT(4X,24H X'VALUE STRESS)

00850 END

00860 SUBROUTINE AU XCX, Y, F, PARAM)

1~00870 DIMENSION YC1),F(l),PARAM(1),QT(5)

00880 COMM4ON QT,FA,P,C3,A

*00890 QY1(V)-. .0C3*V**2*QTC4)*C.&A2)

00900 QY2( VW) -W/V-QT( 4)**6/(W**3)/(V**3)

001 ALSR',I)QT4,3A

00910 CALL SRM(Zl,Y(1~),QT(4),C3,A)

00930 PS-PARAM(1)*2-1.0
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00940 P-2.0*(QT(5)*PARAM(1)*QY2(PARAM(1),Zl)*QY1(PARAM(l))-FA)/PS

00950 QY3i((P*Y(1)**2+.0*FA-,P)/2.0/Y(1)/QT(5))**2

00960 F(l)-Z*SQRT(ABS(I.Oj-QY3/(QY2(Y(1),Z)**2)/(QY1(Y(l))**2)))

00970 RETURN

00980 END

00990 SUBROUTINE AUF(QT,TO,T)

01000 DIMENSION QT(5)

01010 ALPH1B(T)-2.38*1 .OEr5TANA*(T-TO)

01020 ALPH2A(T)u13.7*1 .0E5+(T-253.O)*TANC

01030 ALPH2B(T)-(T-163.0)*TAND

01040 TANA-(2.38;-1.0)*1.0Er,5/130.0

01050 TANC-(40.3:13.7)*.OE97

01060 TAND-(13.7*1 .0E-5-20.0*TANC)/7O.0

C 01070 IF (T.GE.293.0) GO TO 10

p 01080 QT(1)u0.5*(T-aT0)*(ALPHlB(T).ALPHlB(TO))

01090 G0 TO 20

01100 10 ALPHlA.2381.OE-5

01110 QTC1)-ALPHlA*(TATO)

-01120 20 IF (T.GE.233.0) GO TO 30

IN 01130 QT(2).0.5*(Ta1233.0)*(ALPH28(T)+ALPH2A(233.0))

01140+ . -(T-233.O)*(ALPH2A(T0).ALPH2A(233.0))

0115000O TO 40

01160 30 QT(2)uO.5*(T T0)*(ALPH2A(T).ALPH2A(T0))

i 01170 40 QT(3)-EXP(QT(1))

.. *. . . . . . .***.* . .**5* - .* *- : X. -
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01180 QT(4)-EP(QT(2))

01190 QT(5)-T*QT(4)**(-3)/TO

01200 RETURN

01210 END

01220 SUBROUTINE RNAUX(X,X1,PARAM)

01230 DIMENSION PARAM(1)

01240 X-0.0

01250 X1-1.0

01260 RETURN

01270 END

01280 SUBROUTINE BCAUX(G,GI,PARAM)

01290 DIMENSION G(1),G1(1),PARAM(1),QT(5)

01300 COMMON QT

01310 G(1)-QT(3)

01320 GI(1)-PARAM(1)

01330 RETURN
4.'

01340 END

01350 SUBROUTINE PROFILE (H,Mt,DL,FI)

01360 DIMENSION DL(M1),F(M1)

01370 DL(1)-O.O -

01380 DO 51 I-2,M1

01390 DL(I)-DL(I-,1)+H/2.0*(FI(I1)+FI(I))

01400 51 CONTINUE

01410 RETURN

•., '==!U
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01420 END

01430 SUBROUTINE SRM(Z,Y,QC,C3,A)

F 01440 QZ1 iY**4-A*Y**2g.C3*QC**4

01450 QZ2-1 .0+C3*QC**( 2)*Y**2

01460 QZ3-QZ1 **2,12.0*QC**6*Y**2*0Z2**2

01470 QZ4-SQRT(QZ3)

01480 QZ5usQZ1QZ4)/(2.0Y**2*QZ2)

01490 Z-SQRT(QZ5)

01500 RETURN

01510 END

14
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APPENDIX H

PROGRAM 3

00010C APPROXIMATE METHOD, YU021

00020 PROGRAM AM(IMPUT, OUTPUT)

00030 DIMENSION X(3), WK(36), PAR(4)

00040 EXTERNAL FCN

00050 DATA NOUT/6/

00060 N-3

00070 NSIG-4

00080 ITMAX-100

00090 F-.391

00100 C3-0.05

00110 SLO-1.0

00120 WRITE (NOUT, 80) F, C3, SLO q
00130 DO 13 1-1,10

00140 DO 12 K-1,15

00150 X(1)-2.61

00160 X(2)-1.O

00170 X(2)-X(2)+FLOAT(K,-1 )'0.02

00180 X(3)-2.24

00190CDO 12 1-1,10

00200 R-2.20

00210 R-R+FLOAT(I-1 ) 0.1

.-
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00220 WRITE (NOUT, 90) R

00230 PAR(1)-R

00240 PAR(2)-F

00250 PAR(3)-C3

00260 PAR(4)-SLO

00270 CALL ZSPOW(FCN, NSIG, N, ITMAX, PAR, X, FNORM, WK, IER)

Y. 00280 IF (IER.EQ.129) GO TO 10

00290 IF (IER.EQ.130) GO TO 10

00300 IF (IER.EQ.131) GO TO 10

00310 WRITE (NOUT, 100) (X(J), J-1,3)

00320 SN1I-(X(I)/PAR()-1.0/(X(1)**3*PAR(1)**3))*

00330+ (1.0+PAR(1)**2*PAR(3))

00340 SN2-(PAR(1)/X(1)-1.0/(PAR(1)**3*X(1)**3))

00350. *(1.0 X(I)**2*PAR(3))

q00360 WRITE (NOUT, 105) SN1,SN2

00370 GO TO 11

00380 10 CONTINUE

00390 WRITE (NOUT, 110) IER

00400 11 CONTINUE

00410 12 CONTINUE

00420 13 CONTINUE
.4',

00430 80 FORMAT (X, 3H F-, F7.5.4X, 4H C3-, F7.5, 4X, 4H LO-, F7.5)

~00440 90 FORMAT (2(2X/), 3H Rat F7.5)
00450 100 FORMAT (4X, 4H Xl=, F7.4, 4X, 4H X2-, F7.4, 4X, 4H X3-, F7.4)

e4%
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00460 105 FORMAT (J4X, 4H Ni-, F8.5, 4X, 4H N2-, F8.5)

00470 110 FORMAT OlX, 5H IER-, 13)

00480 END

00490 SUBROUTINE FCN(X, F, N, PAR)

00500 DIMENSION X(N), F(N), PAR(4)

00510 FC1)-(X(1)/PAR(l)-1.0/(X(1)**3*PAR(1)**3))*(1.0,PAR(3)*PAR(1)**2)

00520+ ,(2.0*PAR(2),X(2)*(PARt(l)**2~i .0))/2.0/PAR(l)

00530 F(2)-CPAR(1)/X(1).-,1.0/(X(1)**3*PAR(1)**3))*(1.0,PAR(3)*X(1)**2)-

00550+ ((PAR(l)-91.0)**2.X(3)**2))*(X(1)/PAR(l)-1.0/(X(1)**3*PAR(1)

00560+ **3))*(1.0,PARC3)*PAR(1)**2).2.0*PAR(2)*PAR(1)/(PAR(1)**2-- +

1.0)

00570 F()30X3*530PR4*X1*()*+.*PR1 .0)**2*x(3)

00580+ **3 6.0*PAR(4)*XC1)*(PAR(l).4i.0)**2*X(3)**2+.0*(PAR(l)-1 .0)

00590+ **4*XC3).2.0*PAR(4)**3*XC1)**3*CPAR(l)-1 .0)**2 -3.0*PAR(4) .

4 00610 RETURN

00620 END
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APPENDIX I

PROGRAM 4

00010C APPROXIMATE METHOD, YU032, INSTABILITY

00020 PROGRAM AM(IMPUT, OUTPUT)

00030 DIMENSION X(5), WK(75), PAR(3), Y(2), Z(3), G(5)

00040 EXTERNAL FCN, ALG

00050 DATA NOUT/6/

00060 N-5

00070 M1-2

00080 M2-3

00090 NSIG-4

00100 ITMAX-100

00110 F-1.391

00120 C3-0.02

00130 SLO-1.0

00140 DO 13 K-1,20

00150 F-2.60

00160 F-F+FLOAT(KAI)*0.05

00170 WRITE (NOUT, 80) SLO, F, C3

00180 DO 12 Jo=,6

00190 X(2)-1.75

00200 X(2)-X(2),FLOAT(Jpl )*0.04

00210 X(1)-2.45

LI- 99
-.,- .i

' *:a: ~ ~ ~~ ~~ ~ :- :. '.
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"

II- 100

00220 X(3)-2.25

00230 PAR(1)-SLO

00240 PAR(2)-F

00250 PAR(3)-C3

00260 Z(1)-X()

00270 Z(2)-X(2)

00280 Z(3)-X(3)

00290 CALL ALG(Y, Z, G, N, Ml, M2, PAR)

00300 X(4)-Y(1)

00310 X(5)-Y(2)

00320 CALL ZSPOW(FCN, NSIG, N, ITMAX, PAR, X, FNORM, WK, IER)

00330 IF (IER.EQ.129) GO TO 10

00340 IF (IER.EQ.130) GO TO 10 -.

00350 IF (IER.EQ.131) GO TO 10

00360 WRITE (NOUT, 100) (X(I), I-1,N)

00370 PMAX-2.0/(X(2)**2"I1.0)*(X(2)*(X(1)/X(2)-1.0/(X(1)**3*

00380+ X(2)**3) )*( I oO+PAR(3)*x(a)**2)-PAR(2) )"-

00390 WRITE (NOUT, 105) PMAX

00400 GO TO 11

00410 10 CONTINUE

00420CWRITE (NOUT, 110) IER

00430 11 CONTINUE

00440 12 CONTINUE

00450 13 CONTINUE

'ft

ft * 4 . ft -.- '.-.-.



00460 80 FORMAT OlX, 5H SLO-, F7.5, 4X, 3H F-, F7.5, 4X, 4H C3-, F7.5)

'a, 00470 100 FORMAT (2X, 4IH Xl-, F7.14, 3X, 4H X2-, F7.14, 3X, 4H X3-, F7.4,

00480+ 3X, 4H X4-, F7.4, 3X, 4H X5-, F7.4)

00490 105 FORMAT (12X, 4H PM-, F7.4)

00500 110 FORMAT OiX, 5H IER-, 13)

00510 END

4 00520 SUBROUTINE FCN(X, F. N, PAR)

00530 DIMENSION X(N), F(N), PAR(3), Y(2)

00540 F(1)--4.0*X(2)/(XC2)**2.,1.0)**2*((X(l)-1.O/(X(1)**3*XC2)**2))*

00550+ (1.0.PAR(3)*X(2)**2).,PAR(2)).4.0/CX(2)**2-1.0)*((1.0.PAR(3)

00560+ *X(2)**2)/(X(1)**3*X(2)**3).(X(l)-1.0/(X(1)**3*X(2)**2))*X(2)

00570+ *PAR(3)).X(4)*((1.0/X(1).3.0/(X(1)ee3*X(2)**4))*(l.O.PAR(3)

00580+ *X(1)**2)-2.0*PAR(2)*(X(2)**2.1.0)/(X(2)**2-1.0)**2-2.0*

00590+ (-(X(2)**2.1.0)/(XC2)**2-1.0)**2.((X(2)-1.0)**2-X(3)**2)/

*00600. ((XC2)-1.0)**2*X(3)*2)**2)*X(I)al.0/(X(1)**3*X(2)**2))*

00610. (1 .0.PAR(3)*X(2)**2)-4.0/(X(l)**3*X(2)**3)*(X(2)/(X(2)**2-

00620. 1.0)n(XC2)il.O)/((X(2)nl .0)**2.X(3)**2))*(1.0.PAR(3)*XC2)

00630. **2)-40PAR3)*X2)*(X2)/(X2)**2.1 .0)-(X(2)-1 .0)/((X(2)

00640+..)*+()*)*Xl-./(()**()*))X5*1.

00650+ *(X(2)-1.0)RXC3)**3s12.0*PAR()*X(1)*(X(2).,1.0)*X(3)

00660. 0*2.12.0*(X(2)- .0)**3*X(3)-12.0*PAR(1)*X(1)*(X(2)-1 .O)**3

00670+ +4.0*PAR(1)**3*x(l)**3*(X(2)-1.0))

a ~ 00680 F(2)-(X(2)/X(l)-1.0/(X(1)**3*X(2)**3))*(1.o.PAR(3)*XC1)**2).-

0069+ 20*X()*((2)(X(2**21.0)(X()-10)/(X(2-I.O**2X(3

_mk , - A - 0-. '0L, 1 -*->L* l!>'
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I .C2

00700+ **2))*(X(1)/X(2)..0/(X(1)**3*X(2)**3))*(1.0,pAR(3)*X(2)**2)

00710. +2.0*PAR(2)*X(2)/(X(2)**2-1 .0)

00720 F(3)-3.0*X(3)**5-3.0*PARC1)*X(1)*X(3)**4,6.0*(X(2)-1 .0)**2*X(3)

00730. **. .*A()XI*X2-!.)**()*+.*X2-.)*

00740. *X(3).2.0*PAR(1)**3*X(1)**3*(X(2)-1.O)**2-3.0*PAR(1)*XC1)*

00750+ (X(2)-~1.0)**4

00760 F(4)-2.O/(X(2)**2-1.0)*(1.0.3.0/(X(1)**4*X(2)**2))*(1.0+pAR(3)*

00770. X(2)**2)eXC4)/X(1)**2*(-X(2).3.0/(X(1)**2*X(2)**3)).(1 .0

00780. *PAR(3)*X(1)**2).2.0*PAR(3)*X(4)*(X(2)-1.0/(X(1)*#2*X(2)

00790. **3))-2.0*X(2)*X(4)*CX(2)/(XC2)**2-1 .0)-(X(2)-1 .0)/((X(2)

K:00800. 1.)*+()*)*10X2+./X1*4X2*3)(.

00810. *PAR(3)*XC2)**2).XC5)*(-s3.0*PAR(1)*X(3)*4.6.0*pAR(1).(

00820. X(2)-1.0)**2*X(3)**2+6.0*PAR(1)**3*X(1)**2(X(2),1.O)..2-3.0

00830. *PARC1 )*(X2)-.O .)**4)

00840 F(5)-X(4)*(-4.0*XC2)*(X(2)-1.o)*XC3)(Xc1)/X(2)*

1 .0/CX(1)**3*X(2)**3))

00850. *(1.0.PAR(3)*X(2)'*2)/((X(2)-1 .0)**2,X(3)**2)**2).X(5)*(

00860. 15.0*XC3)**4-12.0*PAR(1)*X(1)*X(3)**3,18.0*(X(2)-1 .0)**2

00870. *X(3)**2n12.0*PAR(1)*(X(2)-1.0)**2*X(1)*X(3),3.0*(X(2)-1.0)

00880. **4)

00890 RETURN

00900 END

00910 SUBROUTINE ALG(Y, Z, G, N, Ml, M2, PAR)

00920 DIMENSION Y(MI), G(N), PAR(3), Z(M2)



r~ 03

00930 G(2)-15.0*Z(3)**14.12.0*PAR(1)*Z(1)*Z(3)**3.18.0*(Z(2)-1.0)**2

009140- *Z(3)**2-.12.0*PAR(1)*Z(1)*(Z(2)-1 .0)**2*Z(3).3.0*(Z(2)

00950+ 10k*

00960 (1' )m-4.0Z(2)*(Z(2)r',10)Z(3)/((Z(2),1l.0)**2+Z(3)**2)**2*

00970. (Z(1)/Z(2)r-10/(Z(1)**3*Z(2)**3))*(1.O4PAR(3)*Z(2)**2)

00980 G(3)-2.0/(Z(2)**2-1.0)*((1.0,3.0/(Z(1)**4*Z(2)**2))*(1.0,

00990+ PAR(3)*Z(2)**2))

01000 G(4)-(-Z(2)/Z(1)**2+3.0/(Z(1)**14*Z(2)**3))*(1.0.PAR(3)*Z(1)**2

.,01010+ .Z2/()IO(()**()*)*.*A()Zl

010J40+ .PAR(3)*Z(2)**2)

01050 G(5)--3.0*PAR(1 )*Z(3)**4-6.0*PAR(1 )*(Z(2)... .)**2*ZC3)**2.

01060. 6.0*PAR(1)**3*Z(1)**2*(z(2>.1.0)**2-.3.0*PAR(1)*(Z(2)-l.0)

01070. *

01080 G6-G(2)*G(4)-GCI)*G(5)

01090 Y(l)--G(2)*G(3)/G6

01100 Y(2)-G(1)*G(3)/G6

01110 RETURN

01120 END
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